
Tentamen: EI1120 Elkretsanalys (CENMI), 2013-06-03, kl 08–13

Hjälpmedel: Ett A4-ark med studentens anteckningar (b̊ada sidor). Dessutom, pennor!

Tentan har 7 tal: 2 i del A (10p), 2 i del B (12p) och 3 i del C (18p).
Obs: Samma tal st̊ar här först p̊a engelska (s.1–s.3) och sedan p̊a svenska (s.4–s.6).
Du f̊ar välja mellan dessa spr̊ak för svaren.

Läs varje tal noggrant innan du försöker svara.
Tänk p̊a att använda återst̊aende tid till att kolla p̊a varje svar: man kan göra dimensionsanalys,
rimlighetsbedömning (t.ex. ”är det rätt att y g̊ar ner medan x g̊ar ner?”), och lösning genom en alternativ
metod.
Lösningar ska förenklas om inte annat är specificerat.
Var försiktig med att inte satsa för mycket tid p̊a bara en uppgift om du fastnar: ta hänsyn till poängvärden
av uppgifterna, och att man måste klara varje del av tentan. Det är ofta s̊a att senare deltal är betydligt sv̊arare
än de första deltalen.

Godkänt vid ≥50% p̊a del A, ≥25% p̊a del B och p̊a C, och ≥50% p̊a delar B och C tillsammans.
Godkänd kontrollskrivning gör att man redan klarat del A här p̊a tentan.
Betyget räknas utifr̊an resultatet p̊a B och C delarna: det finns därför ingen fördel med att svara p̊a A-delen
om man har godkänd KS, eller att försöka f̊a mycket hög poäng i A-delen.
Eventuella bonuspoäng fr̊an KS och hemuppgifter tillkommer enligt KursPM. Se ocks̊a PM:et ang̊aende
rättningsnormer och överklagande. Instruktionerna ovan tar prioritet över PM vid skillnad (t.ex. hjälpmedel).

Examinator: Nathaniel Taylor

In English

Part A. DC (static solutions). NOT needed if KS passed: See notes above.

1) [5p]

The current source I has value I = U/R.
Solve for the current marked ix, in the resistor of value R/2.
Answer in terms of the known quantities U and R.

+
− U

R

R/2
ix

R I
2R/3

2) [5p]

In this circuit the unknown current ix is marked; it
controls a dependent current source with gain k.

a) [3p] Use nodal analysis to determine the voltage uab

between points ‘a’ and ‘b’.
There is no single ‘right’ way of doing the analysis:
for example, you can choose which node is defined as
zero potential (ground), and whether you simplify the
diagram first or instead do the simplifications in the
algebra.

R1

+
− U

R2 a

R3

+

−

uab

ix

b

R4

kix

b) [2p] Find the Thevenin equivalent between nodes ‘a’ and ‘b’.
(This should the equivalent for the entire circuit shown above, not just for the parts to the left or the right of
nodes ‘a’ and ‘b’.)
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Part B. Transient analysis

3) [6p]

Find u(t) for all time t > 0.
Note that the switch turns off (becomes an open-circuit) at t = 0.

(Assume the circuit has reached an equilibrium before t = 0.)

+
−U1

t=0

R

+
−U2

L

R

+

−

u(t)

4) [6p]

All these components have known values.
All are constant except the current source,
which has a step-change in output at
t = 0.
Note: u(t) is the unit step.
The quantities ux and ix are unknown.

a) [2p] Find ux and ix just before time
t = 0, i.e. the equilibrium when the
current source has a value of just I.

R1

+−
U

R2

ix R3 L1

I (1 + u(t))

C1
R4

L2

R5

C2

+

−

ux

b) [3p] Find ux and ix just after time t = 0, i.e. “t = 0+” when the current source has just changed its
current but the stored energies in reactive components (L and C) have not changed.

c) [1p] Find ux and ix as t → ∞.

Part C. AC (sinusoidal steady state)

5) [6p]

a) [3p] Derive the network function
H(ω) = U(ω)/I(ω), for the circuit shown
on the right, expressed in known quantities
R1, C1, R2, C2, I. Assume the opamp is
ideal.

b) [1p] Perform a dimensional check of the
solution to part a).

c) [2p] Sketch a Bode amplitude plot of
H(ω). This should include the dc (0Hz)
gain, the gradients (dB/decade), and
the corner frequencies; you can assume
R1C1 ≪ R2C2.

−

+

R1

C1

I(ω)

R2

C2

+

−

U(ω)
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6) [6p]

a) [3p] In the circuit to the right, use
steady-state sinusoidal analysis (“jω-
method”) to find i(t).

b) [2p] Determine the power into
resistor R from the rest of the circuit, as
a function of time. The answer to part a)
may be useful.

+
− Up cos(ωt)

L

R

i(t)

C Ip sin(−ωt)

c) [1p] Calculate the “complex power” into R (i.e. the frequency-domain way of describing power as a complex
function of angular frequency ω, in contrast to the time-domain way used in part b)).

7) [6p]

+
− ua

+
− ub

+
− uc

Z Z Z Z Z

v

The diagram above shows an ideal three-phase voltage-source supplying a balanced three-phase load and an
unbalanced load. The source has angular frequency ω, rms phase-voltage magnitude Up, and phase-sequence
abc.

We will work entirely in the frequency domain, taking ua as the reference phase (0◦) and using rms values.
This means for example that the phasor for the c-phase voltage is uc = Up −4π/3 (or equivalently, Up 2π/3).

The balanced load consists three impedances Z = R + jωL in a ‘Y’-connection. The unbalanced load consists
of two impedances Z (the same value as in the balanced load) connected in series between two phases.

a) [1p] What is the magnitude of the voltage across each impedance Z in the balanced load? (You are not
required to show a derivation for this.)

b) [1p] What is the total complex power into the balanced load? Express the answer in Up, R, L and ω.

c) [1p] What is the magnitude of the voltage across each impedance Z in the unbalanced load?

d) [2p] What is the total active power into the unbalanced load? Express the answer in Up, R, L and ω.

e) [1p] What is the potential v (as a polar complex number: magnitude and angle) of the node between the
two impedances in the unbalanced load?

END of exam. Don’t forget to use remaining time to check all your answers in every imaginable way!
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P̊a svenska (samma problem)

Del A. Likström. Behövs INTE vid godkänd KS: Se sida 1.

1) [5p]

Strömkällan I har värdet I = U/R.
Bestäm strömmen ix, som g̊ar i resistorn R/2.
Ge svaret i de kända storheterna U och R.

+
− U

R

R/2
ix

R I
2R/3

2) [5p]

I denna krets är den okända strömmen ix markerad;
den styr en beroende strömkälla med känd förstärkning
k.

a) [3p] Använd nodanalys för att bestämma spänningen
uab mellan noderna ’a’ och ’b’.
Det finns inte bara ett rätt sätt att göra analysen: man
kan, t.ex. fritt välja vilken nod som definieras som
jordnoden, och kan förenkla kretsen i diagrammet eller
senare inom ekvationerna.

R1

+
− U

R2 a

R3

+

−

uab

ix

b

R4

kix

b) [2p] Bestäm Theveninekvivalenten mellan noderna ’a’ och ’b’. (Denna är en ekvivalent till hela kretsen som
st̊ar i diagrammet, inte bara till den vänstra eller högre sidan av ’a’ och ’b’.)

Del B. Transientanalys

3) [6p]

Bestäm u(t) som funktion av tid, för tider t > 0.
Observera att brytaren öppnas (blir oppenkrets) vid tiden t = 0.

(Anta att kretsen har kommit till jämviktsläge innan t = 0.)

+
−U1

t=0

R

+
−U2

L

R

+

−

u(t)
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4) [6p]

Alla dessa komponenter har kända värde.
Alla är konstanta förutom strömkällan,
vilken har en diskret ändring i sitt värde
vid t = 0.
Obs: u(t) är enhetsstegfunktionen.
Kvantiteterna ux och ix är okända.

a) [2p] Bestäm ux och ix just innan

tiden t = 0, d.v.s. jämviktsläget när
strömkällan har värdet I.

R1

+−

U

R2

ix R3 L1

I (1 + u(t))

C1
R4

L2

R5

C2

+

−

ux

b) [3p] Bestäm ux och ix precis efter tiden t = 0, d.v.s. “t = 0+” när strömkällan har ett nytt värde av
ström, men de lagrade energierna i de reaktiva komponenterna (L och C) har inte hunnit ändras.

c) [1p] Bestäm ux och ix när t → ∞.

Del C. Stationärväxelström

5) [6p]

a) [3p] Bestäm nätverksfunktionen
H(ω) = U(ω)/I(ω), for denna krets, ut-
tryckt i kända variabler R1, C1, R2, C2, I.
Anta att operationsförstärkaren är idéal.

b) [1p] Gör dimensionskoll p̊a lösningen
till del a).

c) [2p] Skissa ett Bode amplitud dia-
gram av H(ω). Diagrammet ska även visa
brytpunkter, lutningar (dB/dekad), och
förstärkning vid 0Hz; anta R1C1 ≪ R2C2.

−

+

R1

C1

I(ω)

R2

C2

+

−

U(ω)

6) [6p]

a) [3p] Använd “jω-metoden” för att
bestämma i(t).

b) [2p] Bestäm tidsfunktionen som
beskriver effekten in till R fr̊an resten
av kretsen. Svaret till del a) kan vara
användbart här.

c) [1p] Bestäm komplexeffekten som g̊ar
in i R (d.v.s. beräkna nu i det vanliga
sättet för frekvensdomänen, till skillnad
fr̊an del ’b)’ som var gjort i tidsdomänen).

+
− Up cos(ωt)

L

R

i(t)

C Ip sin(−ωt)

5 / 8 KTH EI1120 (Elkretsanalys) Tentamen, 2013-06-03



7) [6p]

+
− ua

+
− ub

+
− uc

Z Z Z Z Z

v

Diagrammet ovan visar en ideal trefas spänningskälla vilken försörjer en symmetrisk last och en asymmetrisk
last. Källan har vinkelfrekvensen ω; absolutbeloppet av fasspänningen är Up (effektivvärde), och fasföljden är
abc.

Vi räknar helt i frekvensdomänen, med ua som referensfas (0◦), och i effektivvärdeskalan. Därför är till exempel
visaren för spänningen mellan fas-c och noll-ledaren uc(ω) = Up −4π/3 (eller, ekvivalent, Up 2π/3).

Den symmetriska lasten har tre Y-kopplade impedanser Z = R + jωL. Den asymmetriska lasten har tv̊a im-
pedanser, ocks̊a av det samma värdet Z, serieanslutna med varandra och kopplade mellan faser b och c.

a) [1p] Vad är absolutbeloppet av spänningen över varje impedans Z i den balanserade lasten? (Du behöver
inte visa härledningen av svaret.)

b) [1p] Vilken total komplexeffekt g̊ar in till den balanserade lasten?
Uttryck lösningen i kvantiteterna Up, R, L och ω.

c) [1p] Vad är absolutbeloppet av spänningen över varje impedans Z i den obalanserade lasten?

d) [2p] Vilken total aktiveffekt g̊ar in till den obalanserade lasten?
Uttryck lösningen i kvantiteterna Up, R, L och ω.

e) [1p] Vad är potentialen v (som ett komplextal i polärform: absolutbelopp och vinkel) av noden mellan de
tv̊a impedanserna i den obalanserade lasten?

Slutet av tentamen. Glöm ej att använda återst̊aende tid för att dubbelkolla svaren!
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Solutions

1)
There are several reasonable methods for solving this. Nodal analysis can be used without simplifying the circuit: there
are 3 nodes plus a ground. The current ix can then be found from the voltage across the resistor 2R/3. However, note
that the only potentials actually needed to solve the problem are those at the two nodes at the ends of the resistor
R/2; this guides us about what circuit-simplifications might be profitable before doing the nodal analysis. A source
conversion of the current source (I = U/R) in parallel with resistor R gives us a voltage source of U and a series resistor
R. Then the four original components I, R, 2R/3 and U can be reduced to a single branch of a voltage source of 2U
and series resistor of 5R/3. Let’s define as ground the node into which ix flows, and define the dotted node above R
as an unknown potential, V . Using the simplified branch derived above, KCL in node V gives 0 = V +2U

5R/3
+ V

R
+ V

R/2
,

whence V = −U/3. The current ix is therefore ix = (−U/3)/(R/2) = − 2
3

U
R
.

Another method is to reduce the entire circuit to a loop, using source conversion (as above) converting parallel resistors
R/2 and R to an equivalent of R/3. The loop simplifies to an equivalent voltage source of 2U and a total resistance of
2R, so the current (passing clockwise through U and 2R/3 in the original circuit) is U/R. The current ix is then found
by current division, giving the above solution of ix = − 2

3
U
R
.

2)
a) Let node ‘b’ be ground. Let the potential of node ‘a’ be V . KCL into ‘a’ gives: 0 = U−V

R1+R2
− V

R3
+ kix.

Express ix in node potentials to give 0 = U−V
R1+R2

− V
R3

+ kV
R3

.

Due to our definition of node V and the ground node, V = uab. Thus, uab = V = U/
(

R1+R2

R3
(1− k) + 1

)

.

b) We already have the open-circuit voltage of the Thevenin equivalent, from part ‘a)’. Now we need the Thevenin
impedance, or else the short-circuit current from which we can calculate this impedance. When there is a dependent
source in the circuit, it’s more reliable to calculate short-circuit current than to look directly for the “impedance of the
circuit seen from its terminals with all independent sources set to zero”. In our case the short-circuit current is easily
found: a short-circuit between ‘a’ and ‘b’ forces voltage uab to zero, and therefore the current ix and the current in
the dependent current-source are both zero. The only contribution to short-circuit current is therefore the left branch:

isc = U/ (R1 +R2). The Thevenin impedance is uab/isc, giving Rt = 1/
(

1−k
R3

+ 1
R1+R2

)

.

A diagram should be drawn to show the series voltage source and resistor with these values.

3)
The only reactive component is L, so we expect a simple first-order response. After the switch opens, the relevant part
of the circuit is just the loop of R, U2, L, R. Define current i clockwise in this loop: KVL gives that L di

dt
+ 2Ri = U2.

We also need to find the initial condition. At t = 0− the switch is still on, so the voltage source U1 fixes the voltage across
the series branch of L and R. The equilibrium current in L is therefore iL(t = 0−) = U1/R, as the inductor behaves
as a short-circuit in the equilibrium; this must also be the current at t = 0+. Given this differential equation and the
initial condition, and noting that u(t) = Ri(t), the full solution for t > 0 is u(t) = U1 +(U2/2−U1)(1− exp (−2Rt/L)),
or in shorter form, u(t) = U2/2 + (U1 − U2/2) exp (−2Rt/L).

4)
a) Case t = 0−. Equilibrium means C1 is not carrying current; therefore R3 cannot either carry current (there is
not a full circuit for the current to flow). So the parts of the circuit at the left and right of C1 and R3 can be treated
separately. In this case, clearly ix = U

R1+R2
.

If replacing the inductors and capacitors on the right with the short- and open-circuits, it is clear that a current of I
has to pass through R5 and therefore that ux = IR5.
b) Case t = 0+. Now we are no longer in steady state: the current source has just changed its current to 2I. We cannot
therefore assume that inductor voltages and capacitor currents are zero. We must use the fact that inductor currents

and capacitor voltages are the same as in the previous case, since they have not had time to change. Thus, the current in
L1 is still I (left to right). The current in R3 must therefore be the new source-current minus this: i.e. a current I flows
right to left in R3, and back through C1. The change in ix is probably most simply found by superposition: it is the
original value plus a contribution −I R1

R1+R2
found by current-division of the extra current I, i.e. ix = U

R1+R2
− IR1

R1+R2
.

As capacitor voltages cannot change instantaneously, ux is unchanged: ux = IR5.
c) Case t → ∞. This is easy because as it’s the same situation as in part ‘a)’, but with a different value of the current
source (2I instead of I). Thus ix = U

R1+R2
and ux = 2IR5.

5)
a) One good method here is nodal analysis, as long as we are careful not to attempt KCL on the node of the opamp
output! (Remember, the opamp output is really like a controlled voltage source, where the other side is connected to
ground but is hidden from the diagram for simplicity.)
The opamp is ideal and has negative feedback, so we assume the the potentials of both of its inputs are the same:
thus, the node at the top of the current source is at zero potential (virtual ground). The node above C2 has unknown
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potential that is defined in the diagram as U . Let us define the opamp’s output node as potential V . At the node
of the opamp’s inverting input, KCL gives −I + V ( 1

R1
+ jωC1) = 0. In the (trivial) node of potential U , KCL gives

(V − U)/R2 − jωC2U = 0. Therefore, V = I R1

1+jωC1R1
, and U = V 1

1+jωC2R2
. Putting these together to eliminate V

(which isn’t needed in the solution), H = U
I
= R1

(1+jωC1R1)(1+jωC2R2)
.

b) Dimensions! The left-hand side (lhs) of the above solution, U/I, is an impedance. On the right-hand side, the
numerator is an impedance, and the denominator is dimensionless: that fits with the lhs. Check: expect ωCR to be
dimensionless (as it’s added to a pure number, 1): CR is a time-constant, and ω is an [angular-]frequency, so the product
is indeed dimensionless. In written solution to the exam, this analysis is best done by writing the equation and showing
that the terms on either side of each plus, minus or equality symbol have the same dimension.
c) Both stages of this circuit form single-pole low-pass filters. As ω → 0 the output voltage tends to IR1, so the dc
gain |H(0)| is R1, which in dB is 20 log10 R1. The pole [angular-]frequencies are 1/(R1C1) and 1/(R2C2): when the
frequency passes from below to above each of these, the gain starts changing by a further −20 dB/decade. So the plot
should have three slopes: 0 dB/dec at low frequency, then −20 dB/dec in the range 1

R2C2
< ω < 1

R1C1
, and −40 dB/dec

at frequencies above this range. (This is clearly a low-pass filter.)

6)
a) Let’s be conventional by using a cosine reference. This time we’ll follow the convention of communications people
and use the peak of the sinusoid as the magnitude of the phasor (instead of the common power-engineering practice
where phasors’ magnitudes are rms values). These choices makes no difference to the solution, as long as we are consi-
stent. The voltage source is then Up 0, and the current source is Ip π/2 or equivalently jIp.
Define the node above R to have potential V , and the node below R to be ground; the trivial node between the voltage
source and inductor can be ignored by treating both of these components together as a single branch. By KCL in the

upper node,
Up−V

jωL
− V

R
−jωCV +jIp = 0. Thus, V = j

Ip−Up/(ωL)

1/(jωL)+1/R+jωC
, and dividing by R gives i(ω) = j

Ip−Up/(ωL)

1+j(ωCR−R/(ωL))
.

Converting back to the time-domain with the same conventions (peak value, and cosine reference) the magnitude and

angle of i(ω) give i(t) =
Ip−Up/(ωL)√

1+(ωCR−R/(ωL))2
cos

(

ωt+ π/2− tan−1 (ωCR−R/(ωL))
)

.

b) Power in a resistor R is, at every instant, given by the product of resistance and the square of the current:

P (t) = i2(t)R. From the relation that A2 cos2(θ) = A2

2
(1 + cos(2θ)), the solution to part ‘a)’ can be adapted,

P (t) = R
2

(Ip−Up/(ωL))2

1+(ωCR−R/(ωL))2

[

1− cos
(

2ωt− 2 tan−1 (ωCR−R/(ωL))
)]

.

c) Complex power is defined in terms of complex rms voltage and current as S = UI∗. Using the relation U = IR,
this gives S = RII∗, or S = R|I|2. We know |I| from part ‘a)’, but we’ve used peak values so we should divide I by

√
2

(or divide I2 by 2), to give S = R
2

(Ip−Up/(ωL))2

1+(ωCR−R/(ωL))2
. The result is purely real: this is to be expected, as a linear resistor

has no reactive power consumption.

7)
a) Answer: Up. Explanation (not required): The common node of the balanced load (the “star point” or “neutral
point”) will have zero potential. This can be seen by symmetry, or by using KCL on that node and solving for its
potential. The voltage across each impedance is therefore the voltage of the voltage-source that it is connected to,
which means a magnitude of Up. Another way of thinking is that the source and load are both Y-connected.

b) Complex power into an impedance R+jωL due to a voltage of rms magnitude Up is S =
U2

p

R2+ω2L2 (R+jωL). This can
be seen by starting from S = UI∗, as in question 6c), but substituting out the I instead of the U , then multiplying top and

bottom by Z∗. There are three impedances, each with this complex power. Therefore, Sbalanced =
3U2

p

R2+ω2L2 (R+ jωL) .
c) The unbalanced load is two impedances of Z connected in series from phase to phase: it is therefore exposed to the

line voltage, which has magnitude
√
3Up, so each of the two impedances has

√
3

2
Up by voltage division.

d) Using the general result from part ‘b’, for a single impedance, we know the complex power into the unbalanced

load will be S =
3U2

p

2(R2+ω2L2)
(R+ jωL). Note the extra ‘2’ in the denominator, because of the impedance being 2Z, and

the ‘3’ in the numerator because of the impedances being connected across the line voltage. We want, however, only
the real part (the active power). That’s easy, because the above formula is already arranged to separate the real and

imaginary parts: we just take one term, P =
3U2

p

2(R2+ω2L2)
R.

Note: an alternative way to express the apparent power would be
3U2

p

2(R−jωL)
; one should then be careful to avoid the

fundamental but common mistake of claiming that “P =
3U2

p

2R
” [false!].

e) One way to calculate this is nodal-style analysis: KCL in point v gives ub−v
Z

+ uc−v
Z

= 0. Thus v = ub+uc

2
which is

Up

2
(1 2π/3 + 1 −2π/3) and can be simplified to −Up, i.e. v =

Up

2
π.
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