
KTH EI1120 Elkretsanalys (CENMI), Omtenta 2014-05-22 kl 08–13

Hjälpmedel: Ett A4-ark med studentens anteckningar (b̊ada sidor).

Svar f̊ar anges p̊a svenska eller engelska. En kort ordlista finns p̊a sista sidan.

Läs varje tal noggrant innan du försöker svara.
Tänk p̊a att använda återst̊aende tid till att kolla igenom varje svar: man kan göra dimensionsanalys,
rimlighetsbedömning (t.ex. ”är det rätt att y g̊ar ner medan x g̊ar ner?”), och lösning genom en alternativ
metod. Lösningar ska förenklas om inte annat är specificerat.
Satsa inte för mycket tid p̊a bara en uppgift om du fastnar: ta hänsyn till poängvärden p̊a uppgifterna.
Det är ofta s̊a att senare deltal är betydligt sv̊arare än de första deltalen.

Tentan har 8 tal i 3 delar: 3 i del A (12p), 2 i del B (10p) och 3 i del C (18p).
Räknande av betyg: L̊at A, B och C vara de maximala möjliga poängen fr̊an delarna A, B och C i tentan, d.v.s.
A=12, B=10, C=18. L̊at a, b och c vara poängen man f̊ar i dessa respektive delar i tentan, och ak vara poängen
man fick fr̊an kontrollskrivning KS1, och bk poängen fr̊an KS2, och h bonuspoängen fr̊an hemuppgifterna.
Godkänd tentamen (och därigenom hel kurs) kräver:

max(a, ak)

A
≥ 0,4 &

max(b, bk)

B
≥ 0,4 &

c

C
≥ 0,3 &

max(a, ak) + max(b, bk) + c+ h

A+B + C
≥ 0,5.

Betyget räknas ocks̊a fr̊an summan över alla delar och bonuspoäng, d.v.s. sista termen ovan!
Betygsgränserna (%) är 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). Är betyget mellan 44 och 50%, eller bara en
av delarna av tentan underkänd trots bra betyg i de andra, s̊a kan betyget Fx registreras, med möjlighet att
f̊a betyget E om ett kompletteringsarbete är godkänt inom n̊agra veckor efter tentamen. Se PM:et ang̊aende
rättningsnormer och överklagande. Instruktionerna ovan tar prioritet över PM vid skillnad.

Examinator: Nathaniel Taylor

Del A. Likström

1) [4p]
Kända: R1, R2, R3, R4, U , I1, I2.

a) [1p] Bestäm effekten levererat till R1.

b) [1p] Bestäm effekten levererat till R3.

c) [2p] Bestäm effekten levererat fr̊an källan U . R1

R2

+
−

U

R3

I1

I2

R4

2) [4p]
Kända: R1, R2, R3, R4, U , I, g, h.

Använd nodanalys för att skriva ekvationer som g̊ar att
lösa för de okända potentialerna v1, v2, v3, v4.

Du m̊aste inte lösa ekvationerna, och m̊aste inte skriva
om dem i förenklad eller matris form. Du f̊ar definiera
hjälpvariabler (men ekvationerna måste räcka till att
unikt bestämma potentialerna).

Det finns flera möjliga svar (alla med samma lösning).
Förmodligen är det bäst att använda ett systematiskt sätt
att skriva ekvationerna . . .

R3

v1

+
−U

v2

+−

hiy

R1

+ −ux

R2

v3

gux

v4

I

v0

R4 iy
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3) [4p]
Kända: U , I, R1, R2, R3, R4, R5.
Operationsförstärkaren antas vara idéal.

a) [3,5p] Bestäm vo.

b) [0,5p] Vilken komponent är inte relevant
till lösningen av del ’a)’? Varför?

−

+

+
− U

R1

R2

I

R3

R4

vo

R5

Del B. Transient

4) [5p]
Kända: I, C, R1, R2, R3.
Kretsen är i jämviktsläge innan tiden t = 0.
Enhetsstegfunktionen är skriven här som 1(t).

Bestäm strömmen i(t) i kondensatorn, som tids-
funktion för perioden t > 0.

R1

C

i(t)

R2

I · (1+1(t))

R3

5) [5p]
Kända: I, U , R1, R2, R3, L1, C1, C2.

a) [3p] Betrakta jämviktsläget vid t = 0−.
Bestäm i3(0

−), u1(0
−), och u2(0

−).

b) [2p] Betrakta tiden t = 0+.
Bestäm u2(0

+) och i3(0
+).

I

R1

C2

+

−
u2

C1

+ −
u1

L1 R3

i3

+
− U

R2

t = 0

Del C. Växelström

6) [6p]
Kända: R1, L1, h, R2, L2.
Spänningen u0 p̊a polerna till vänster orsaker
spänningen u1 mellan polerna till höger, vilka är
öppna (ingen ström).

a) [3p] Bestäm kretsens nätverksfunktion,

H(ω) =
u1(ω)

u0(ω)
.

+
−u0

R1

L1

ix

+

−hix

R2

L2

+

−

u1

b) [3p] (Observera att funktionen H ′(ω) i detta deltal inte är lika med funktionen H(ω) fr̊an deltal ’a)’ !)
Skissa ett Bode amplituddiagram, p̊a antagandet ω1 ≪ ω2 ≪ ω3 ≪ ω4, och k < 1, av funktionen

H ′(ω) = k
(1 + jω/ω1)(1 + jω/ω4)

(1 + jω/ω2)(1 + jω/ω3)
.
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7) [6p]
Kända: Û , ω, ϕ, R1, C.
Observera att beräkningarna här kan göras med
växelströmsanalys (komplexa tal).

a) [3p] Bestäm R2 och L för att maximera effektutveck-
lingen i R2.

b) [3p] Bestäm den genomsnittliga effekten (”aktiveffekt”
i växelströms terminologi) i R2. Anta att R2 och L är
bestämd enligt deltal ’a)’, och att man kan därför uttrycka
lösningen med bara de kända variablerna.
Har du inte gjort deltal ’a)’, s̊a kan du skriva uttrycket
med R2 och L ocks̊a (det blir d̊a lite avdrag för mindre
förenklad svar).

+
− u(t) = Û sin(ωt+ ϕ)

R1

C

L

R2

i(t)

8) [6p]
Kända: U , ω, R, L, C.
Källorna i diagrammet är växelströmskällor med vinkelfrekvens ω och spänning (effektivvärde) U .
De kan beskrivas med fasvektorer ua = U 0, ub = U −120◦ och uc = U −240◦.
Varje impedans Z1 är en spole L, och varje impedans Z2 är en seriekopplade most̊and R och kondensator C.

+
− ua

+
− ub

+
− uc

ic

Z1

Z
1

Z1

Z2

Z
2Z

2

a) [3p] Vilken aktiveffekt försörjs av hela trefaskällan (alla tre spänningskällor)?

b) [2p] Vilket värde måste L ha (uttryckt i ω, R, och C) för att ingen reaktiveffekt dras fr̊an källan?

c) [1p] Bestäm ic (magnitud och fas) när L är valt enligt deltal ’b’.

Ordlista över mindre självklara översättningar: current ström, voltage spänning, power effekt, rms

value effektivvärde, phasor fasvektor, source källa, unit-step enhetssteg, terminal pol, opamp (operational

amplifier) operationsförstärkare, angular(radian) frequency vinkelfrekvens, equilibrium jämviktsläge, inductor

(coil) spole, active power aktiveffekt.
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Solutions (EI1120, VT14, 2014-05-22)

Q1

It is useful to remember that the power dissipation in a resistor R is i2R or u2/R, regardless of the direction
(sign) of current or voltage.

a) The series combination of R1 and R2 is connected directly across a voltage source, U , so the remainder of
the circuit is irrelevant.

The magnitude of current in R1 is U
R1+R2

, so the power is
(

U
R1+R2

)2

R1, giving PR1
= U2R1

(R1+R2)
2 .

b) Consider KCL in the right-hand node of R3: the current from right to left in R3 must be I1 + I2.

Thus, PR3
= (I1 + I2)

2
R3.

c) There are two paths that current from source U can travel: one is through the resistors R1 and R2, and the
other is through R3 and the current-sources; these currents have been used already in the above two questions.

The current out from the + terminal of U is therefore seen to be IU = U
R1+R2

+ I1 + I2, so the power delivered

by the voltage source is PU = U2

R1+R2
+ UI1 + UI2.

Q2

Let’s just show the “simple” method (of writing lots of equations, systematically, without any simplifications).

First, KCL at all nodes except the ground node. The currents in the voltage sources are not known, so we
define new unknowns: the current into the + of the independent source U can be called iu, and the current
into the + of the dependent source hiy can be called ih.

v1
R3

− iu − ih = 0 KCL(1)out

v2 − v3
R1

+ iu = 0 KCL(2)out

v3 − v2
R1

+
v3
R2

+ gux = 0 KCL(3)out

v4
R4

− gux − I = 0 KCL(4)out

Each voltage source has introduced a new unknown, hence the iu and ih in the above. But each voltage source
also gives a further equation, relating two node-potentials. Write these equations:

v2 − v1 = U

v1 = −hiy.

The dependent sources depend on further variables that are not known, ux and iy. Use circuit properties to
define these controlling variables in terms of components (known) and node potentials (unknowns that we
already have in our equations),

ux = v2 − v3

iy =
v4
R4

.

Now the unknowns are v1, v2, v3, v4, ux, iy, iu and ih (total 8). Lo and behold — there are 8 equations, too.
And if the circuit is a sensible one, we can expect these equations to be linearly independent, giving a solvable
system. If we had tried more inventive methods of setting up the equations, we would have to think hard about
ensuring the independence.

Q3

a) By the usual assumption of an ideal opamp with negative feedback, v− = v+.

By voltage division, v− = v+ = UR2

R1+R2
.

Node analysis with KCL(out) at the inverting input gives v−

R3
+ I + v−−vo

R4
= 0, so vo = v−

R3+R4

R3
+ IR4.
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Putting these together, vo = U R2(R3+R4)
R3(R1+R2)

+ IR4.

b) The resistor R5 does not appear in the solution above. It can be seen to be irrelevant as it is connected in
parallel with a voltage source. The voltage source is the one “inside” the opamp (in other words, “modelling
the opamp”), which also connects between opamp output and ground.

Another way of thinking is that the current in R5 has no effect on the opamp inputs, so the opamp output
will be whatever is needed to force the inputs to the same potential; there is no feedback path through R5, so
this component is irrelevant to the question of what the output voltage is (it is relevant to another question:
what is the output current . . . but that is not the question here).

Q4

As there is just one reactive component, the rest of the circuit can be reduced to an equivalent source: let’s
use a Thevenin equivalent. Remove the capacitor, and find the Thevenin equivalent at the terminals where
it connected. The open-circuit voltage is UT = I · (1 + 1(t))R2; this can be found by considering that if the
capacitor is replaced with an open circuit, then all the current from the source must go through R2, and R1

has zero voltage. The resistance is RT = R1 + R2, which can be seen by looking at the circuit impedance
between the terminals when the source is “set to zero”.

In the equilibrium at t = 0−, the capacitor voltage will equal the source voltage before the step, i.e. it will
be IR2. The final equilibrium as t → ∞ will give a capacitor voltage of equal to the source’s open-circuit
voltage, i.e. vc(∞) = UT(∞) = 2IR2. The time-constant is CRT = C (R1 +R2). The final current must be
zero, i(∞) = 0, as the source is charging the capacitor. The initial current is i(0+) = 2IR2−IR2

R1+R2
= R2

R1+R2
I,

driven by the difference between the source and capacitor voltages, acting on the source resistance. So the
time-function after the step is i(t) = R2

R1+R2
I exp −t

C(R1+R2)
.

So, i(t) = R2

R1+R2
I exp

(

−t
C(R1+R2)

)

, (for t > 0).

Q5

a)

When the switch is open and capacitors are in equilibrium, there is just one path around the circuit, which
includes the current source and the marked current i3; checking the direction, we see that i3(0

−) = I.

KVL in the loop with R1 and L1 shows that u1(0
−) = IR1, as there is zero voltage across the inductor in

equilibrium.

By KVL in a wisely chosen loop, it is seen that u2(0
−) = U + I(R2 +R3). Note that the current-source’s

voltage is not initially known (e.g. it is not guaranteed to be zero), so we need to do KVL around L1, R3, U ,
R2.

b)

A capacitor’s voltage has continuity: therefore, from part ‘a)’, u2(0
+) = U + I(R2 +R3).

The final part, finding i3(0
+), is more difficult. First replace all inductors and capacitors with (respectively)

current and voltage sources having the values calculated at t = 0− (continuity).

Then it is convenient to choose the node below R3 as the reference (ground). The source I must draw all
its current through R2 and C2; these two components connect back to the ground node without any other
connection to parts of the circuit that affect i3. So the three components C2, R2 and U can be ignored, and
we assume the input terminal of source I is connected directly to the ground node.

The remaining circuit is just the ground node and a supernode. The supernode is the nodes on the two sides of
C1, which for this analysis at t = 0+ can be replaced with a voltage source of value u1 = IR1, as found in part
‘a)’. Defining the potential of the node above R3 to be v, KCL(out) in the supernode gives v

R3
−I−I+ v+IR1

R1
= 0,

as the inductor is replaced by a current source I which is the current in the inductor in the equilibrium t = 0−.

Hence, v
(

1
R1

+ 1
R3

)

= I, and i3 = v
R3

; combining these gives i3(0
+) = IR1

R1+R3
.

Q6
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a) The three components on the left are independent of the three on the right: there is only one node in
common between the two sides, and the dependent source is controlled by a variable on the left side.

The left side can be analysed by itself to find the controlling variable ix, which then can be inserted to solve
the right side. (Or just write the node equations and see the same result.)

The left: ix = u0

R1+jωL1
.

The right: voltage division: u1 = hix
jωL2

R2+jωL2
.

Combined, u1

u0
= h jωL2

(R1+jωL1)(R2+jωL2)
.

b) Bode amplitude plot of the function k (1+jω/ω1)(1+jω/ω4)
(1+jω/ω2)(1+jω/ω3)

. This has two poles and two zeros.

The following figure is only an example! The numbers are just ones that were chosen as one example of
parameters that fit the given conditions; for example, I’ve chosen k = 0.1, ω1 = 2π · 100Hz, etc. The figure
also shows a phase-plot on the right: this was not required, but is included for interest . . . one day we might
have a phase-plot question in an exam. The poor quality of the figures is due to use of Matlab (and my not
having all day to fool around trying to make its output look like what’s on the screen); one day I must learn
a decent program for plotting, such as SciPy Matplotlib or such.
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The given relation of ω1 ≪ ω2 ≪ ω3 ≪ ω4 determines that, from left to right, there is a flat part, then up,
then another flat part, then down, then another flat part. The vertical position of the third flat part could
be anywhere below the position of the second one, depending on the actual values of the frequency-constants.
If the order of the frequency-constants were different, e.g. ω2 ≪ ω1, then the shape would be qualitatively
different. If the frequency-constants were closer together (just ‘<’, not ‘≪’) then we would not even get a
straight line in the plot between the different frequencies.

Explanation of the shape. For ω ≪ ω1, all four pole or zero terms are approximately 1, so the gain is just k.
This should be marked on the y-axis as a dB value of 20 log10 k. Increasing the frequency, there is first a zero,
so the amplitude plot starts increasing at 20 dB/decade; then there is a pole, which cancels the effect of the
zero, giving a flat response again. The next change is another pole, giving a response of −20 dB/decade, i.e.
falling, until the final zero is reached, after which the zeros and poles cancel (2 zeros and 2 poles), giving a flat
response again. The value of the function for ω ≫ ω4 will be kω2ω3

ω1ω4
, but there won’t be removal of points for

omitting this on the sketch.

Q7

a) We are told that R1 and C (and the source) are known, but that we can choose R2 and L, with the aim
of maximising the power into R2 (the power into R2 is of course purely real, as it is a pure resistor).

This is therefore a classic maximum power question, with source-impedance of Z1 = 1
(

1
R1

+jωC
) .

The ac maximum power principle is that the load, Z2 = R2 + jωL, must be the complex conjugate of the
source impedance in order to give maximum active power transfer to the load.

Therefore, we want to choose R2 and L so that Z1 = Z∗
2 , or equivalently, Z

∗
1 = Z2.

Being wise, we look ahead: Z2 already has these variables R2 and L separated between its real and imaginary
parts; we therefore keep Z2 as it is, and manipulate Z1 so that was can separate its real and imaginary parts
and equate them with the corresponding parts of Z2.

Z2 = R2 + jωL = Z∗
1 =

(

1
1
R1

+ jωC

)∗

=
1

1
R1

− jωC
=

R1 + jωCR2
1

1 + ω2C2R2
1

.

6 / 7 KTH EI1120 (Electric circuit analyis) Exam SOLUTIONS, 2014-05-22



Equating the real and imaginary parts, R2 = R1

1+ω2C2R2
1

and L =
CR2

1

1+ω2C2R2
1

.

b) The total circuit impedance seen by the source is Z1 + Z2. When the values of R2 and L are chosen
according to part ‘a)’, above, then we know Z∗

1 = Z2, so the total circuit impedance is Z1+Z∗
1 . This simplifies

to 2ℜ{Z1}, where ℜ{} indicates the real part.

To find the power dissipated in R2, it is sufficient to know the rms current. The load components (R2 and L)
are in series, so the current in R2 is the same as the marked current i. There is no need to care about the phase
angle when calculating power due to a current in a resistor: only the magnitude is important. The magnitude
of the current around the circuit is

i =
Û

2ℜ{Z1}
=

Û

2R2
= Û

1 + ω2C2R2
1

2R1
,

which is a peak value, because Û is a peak value.

The mean power dissipation (active power) in the load is 1
2 |i|2R2.

The factor 1/2 is needed because the i that we calculated above is a peak value.

Putting these together, P = Û2

2 · (1+ω2C2R2
1)

2

4R2
1

· R1

1+ω2C2R2
1

.

The solution is then P =
Û2(1+ω2C2R2

1)
8R1

.

Q8

a) Each impedance Z1 is jωL, and has rms voltage U across it, and there are three such impedances.

By the relation S = |u|2
Z∗

, the total complex power to the three Z1 is S1 = 3U2

−jωL = j 3U2

ωL .
We note that this is purely imaginary, so there is no active power, which means we didn’t really need to
calculate it — we could just have said “there will be no active power in an [ideal] inductor”.

Each impedance Z2 is R+ 1
jωC , and the voltage across it is

√
3U due to the delta connection.

The complex power into the three impedances Z2 is therefore S2 = 3
(
√
3U)

2

R− 1
jωC

=
9U2(R−j 1

ωC )
R2+(ωC)−2 .

The total complex power is the sum of the above two contributions, S1 + S2, and the total active power is the
real part of this. Because the Z1 gives no active power, we just need to consider the real part of S2.

That gives P = 9U2R
R2+(ωC)−2 .

b) Choose L to set the reactive power from the source to be zero. This means that we want ℑ{S1 + S2} = 0,
where ℑ{} mean the imaginary part.

From the above expressions for reactive power (or by considering that Z1 is inductive, and Z2 is partially
capacitive) we see that the two loads have opposite sign of reactive power. The task is therefore to set their
reactive powers to have equal magnitude, so that they cancel.

The required equality is 3U2

ωL =
9U2 1

ωC

R2+(ωC)−2 , so the required inductance is L = R2+(ωC)−2

3 C.

c) It is known (from part ‘b)’) that the load is balanced and the reactive power from the source is zero. The
reactive power from each individual voltage source must therefore be zero, so the current ic must have the
same phase-angle as the voltage uc. (Note that in general, a zero reactive power could also be acheived by a
phase-shift of π, or by the current having zero magnitude: but we exclude these situations here because we
know that Z2 is partly resistive and is therefore consuming active power.)

This fixes the phase-angle to ic = uc = −240◦ = 120◦.

The magnitude of ic is whatever is needed to provide one third of the total active power consumption of the

loads, i.e. P/3 where P is from part ‘a)’. This is |ic| = 9U2R
R2+(ωC)−2 / (3U) = 3UR

R2+(ωC)−2 .

The complex current in phase c is therefore ic =
3UR

R2+(ωC)−2 −240◦.
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