
Tentamen [s]: EI1102/EI1100 Elkretsanalys, 2014-08-29 kl 08–13

Omtentan gäller en nerlagd kurs, vilken hade sista omg̊angen HT13. Nästa omtentan planeras att ske samtidig
med tentan i kursen EI1120, VT15.

Hjälpmedel: Ett A4-ark med studentens anteckningar (b̊ada sidor). Dessutom, pennor!

Svar f̊ar anges p̊a svenska eller engelska. En kort ordlista finns p̊a sista sidan.
Tentan har 3 tal i del A (15p), och 3 tal i del B (15p).
Godkänt vid ≥25% p̊a del A och del B individuellt, och ≥50% p̊a delarna A och B tillsammans. Betyget räknas
sedan fr̊an summan av A och B. Se KursPM:et ang̊aende betygsgränser, rättningsnormer och överklagande.

Läs varje tal noggrant innan du försöker svara.

Senare deltal kan vara betydligt sv̊arare än de första deltalen.
Satsa inte för mycket tid p̊a bara en uppgift om du fastnar: ta hänsyn till poängvärden p̊a uppgifterna,
och att man måste b̊ade delar av tentan.

Tänk p̊a att använda återst̊aende tid till att kolla igenom varje svar: man kan göra dimensionsanalys,
rimlighetsbedömning (t.ex. ”är det rätt att y g̊ar ner medan x g̊ar ner?”), och lösning genom en alternativ
metod. Lösningar ska förenklas om inte annat är specificerat.

Examinator: Nathaniel Taylor

Del A. Likström och Transienter.

1) [5p]
Kända: R1, R2, R3, R4, U , I1, I2.

a) [1p] Bestäm effekten levererat till R2.

b) [1p] Bestäm den markerade spänningen ux.

c) [1p] Bestäm effekten levererat till R3.

d) [2p] Bestäm effekten levererat fr̊an källan U .
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2) [5p]
Kända: R1, R2, R3, R4, U , I, g, h.

Använd nodanalys för att skriva ekva-
tioner som g̊ar att lösa för de okända
potentialerna v1, v2, v3, v4.

Du m̊aste inte lösa ekvationerna, och
m̊aste inte skriva om dem i förenklad eller
matris form. Det finns flera möjliga svar
(alla med samma lösning).
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3) [5p]
Kända: U , C, L1, L2, R1, R2, R3.
Kretsen är i jämviktsläge vid tiden t = 0−,
d.v.s. just innan t = 0 när brytaren stängs.

a) [2p] Bestäm i(0−).

b) [2p] Bestäm u(0+).

c) [1p] Bestäm funktionen i(t), för t > 0.
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Del B. Växelström

4) [5p]
Kända: Ri, R, L, Ro.
Spänningen ui p̊a polerna till vänster orsaker spänningen uo

mellan polerna till höger.

a) [2p] Bestäm kretsens nätverksfunktion,
uo(ω)

ui(ω)
.

b) [3p] Nätverksfunktionen fr̊an deltal ’a)’ borde kunna skrivas
i formen,

H(ω) = 1 +
jω/ωz

1 + jω/ωp
.

(Du måste inte bevisa det, men du kanske vill dubbelkolla del ’a’ !)
Skissa ett Bode amplituddiagram av H(ω), med viktiga punkter
och lutningar markerade. Anta att ωp ≫ ωz. Är du osäker om han-
tering av ’1+’ termen, s̊a kan du lämna ut den utan stort avdrag.
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5) [5p]
Kända: I, C, R, L, ω.
I är en komplex storhet som beskriver en växelströmskälla
av vinkelfrekvensen ω.

a) [2p] Bestäm Norton-ekvivalenten av kretsen, mellan po-
lerna ’a’ och ’b’. Visa ekvivalanten med ett diagram. Var inte
förv̊anad om inte alla kända komponentvärdena behövs.

I

C

R L

iab

a

b

b) [3p] En impedans kopplas till kretsen, mellan polerna ’a’ och ’b’. Rita ett diagram av hur impedan-
sen kan skapas med tv̊a komponenter (välj mellan motst̊and, spole, kondensator) p̊a ett sätt som maximerar
överföringen av aktiveffekt till impedansen. Det finns flera än ett sätt. Uttryck de tv̊a komponentvärden i de
kända variablerna.

6) [5p]
Kända: Û , Î, ω, θ, R, L, C.
Tidsvariabeln är t.

a) [3p] Bestäm ix(t). Anta att lösningen kan
göras med växelströmsanalys, d.v.s. att det inte
finns transienter kvar. Observera att källorna
har olika frekvenser.

b) [2p] Bestäm den genomsnittliga effekten
(”aktiveffekt” i växelströms terminologi) i R.

i(t) = Î sin(2ωt)

L

C

+
−u(t) = Û cos(ωt+ θ)

ix(t)

R

Ordlista över mindre självklara översättningar: resistor motst̊and, capacitor kondensator, inductor (coil)

spole, current ström, voltage spänning, power effekt, active power aktiveffekt source källa, switch brytare,

terminal pol, angular(radian) frequency vinkelfrekvens,
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Solutions (EI1102, Omtenta 2014-08-29)

Q1

a) Resistor R2 is in series with a current source I2, which determines its current. Power in a resistor can be
calculated from current and resistance, without having to consider the direction of current. The power into
the resistor is I22R2.

b) The marked voltage ux across R3 can be found by voltage division across the series-connected pair R3

and R4. This is convenient because this pair is directly connected to the voltage source U ; it might not be
very obvious, but you can follow the nodes round to see that it’s true. Therefore, ux = U R3

R3+R4
. One should

be careful to check that the definition directions of U and ux don’t make a negative sign necessary!

c) The voltage across R3 is ux, already known from the above.

The power dissipated in a resistor can be found from the voltage across it and its resistance, i.e.
u2
x

R3
.

This power is
(

U R3

R3+R4

)2

/R3, which simplifies to U2R3

(R3+R4)2
.

d) The voltage of a voltage source is known by definition. By finding the current coming out of the + terminal
of source U , and multiplying by this voltage U , the power out of the source is found. So, what is the current?
Consider the node at the + terminal of the voltage source:
* the current from this node into the current source I1 is −I1;
* the current into the resistor R3 is U

R3+R4
as found in part ‘b)’;

and so, by KCL, the current out from the voltage source’s + terminal is U
R3+R4

− I1.

The power out from the voltage source is then U2

R3+R4
− UI1.

Q2

Some previous solutions of homeworks or exams have shown two methods of systematically writing an equation
system from a circuit. Here, we will use just the ‘simple’ direct method, which results in more equations and
variables, but has advantages of less work spent on making simplifications, and more direct correspondence
between the equations and the circuit diagram. Other methods, e.g. by considering ‘supernodes’, produce a
smaller equation system, which can be desirable for hand-calculation.

Define currents (unknown variables) in the voltage sources: let’s call them Iα into the + pole of source U , and
Iβ into the + pole of source hix.

Now do KCL on the outgoing current at all the nodes other than the ground node:

KCL(1): Iβ − Iα +
v1 − v4
R2

= 0

KCL(2): −Iβ +
v2
R1

= 0

KCL(3): guy +
v3 − v4
R3

+
v3 − v4
R4

− I = 0

KCL(4):
v4 − v1
R2

+
v4 − v3
R3

+
v4 − v3
R4

+ I = 0

Then we add equations describing the relations imposed between node potentials by the voltage sources. These
two equations compensate for the two unknown currents Iα and Iβ in the voltage sources.

v1 = −U

v1 − v2 = hix

Finally, the two controlling variables of the dependent sources need to be defined in terms of already-introduced
variables:

uy = v3 − v4

ix =
v3 − v4
R4

− I
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Counting up the unknowns and equations, we see v1···4, Iα, Iβ , ix and uy (8 unknowns), and 8 equations also.
Having used a suitable systematic method, we can be confident that a solvable circuit will have given a solvable
equation system.

Q3

a) The source is dc (a constant value) and we are told to assume that there is equilibrium at this time t = 0−.
We can therefore find voltages and currents by replacing inductors with short circuits, and capacitors with
open circuits. This leaves a circuit with just the three resistors and voltage source.

Solving for current i, which is the current through resistor R1, we can first find the current from the source,
which is U

R1R2
R1+R2

+R3

, then use current division between R1 and R2, giving i(0−) = U
R1R2

R1+R2
+R3

· R2

R1+R2
.

Simplifying this, i(0−) = UR2

R1R2+R3(R1+R2)
.

b) The voltage u(t) is defined across a capacitor: it is therefore a continuous variable, as it relates to the
stored energy, so u(0−) = u(0+). The task of finding u(0+) is thus acheived by finding the equilibrium level,
u(0−) before the switch closed.

By the same process as part ‘a)’, the circuit can be reduced to three resistors and the voltage source, and u is
seen to be the same as the voltage across the parallel resistors R1 or R2.

By voltage division, this is u(0−) = U
R1R2

R1+R2
R1R2

R1+R2
+R3

.

Simplifying, and using u(0−) = u(0+), the answer is u(0+) = U 1

1+R3
R1+R2
R1R2

or u(0+) = UR1R2

R1R2+R2R3+R3R1
.

c) The current i is the current in an inductor, so it is a continuous variable. Its initial state, i(0+), is therefore
the same as i(0−) which was found in part ‘a)’. The switch short-circuits R2 and the right part of the circuit,
so the current i(t > 0) runs in a loop of just L1 and R1. This loop has a time-constant of τ = L1/R1. The
final state of i(t) as t → ∞, must be zero, as there is no source but there is a resistor that dissipates energy.

The requested time-function is therefore i(t) = i(0−) exp(−t/τ), which has the desired property of going from
the initial value to the final value, in an exponential shape with time-constant τ , as expected for a first-order
circuit.

This answer should ideally be expressed in the given quantities: i(t) = UR2

R1R2+R3(R1+R2)
exp−tR1

L1
(t > 0).

Q4

Yes, I could have mentioned that the opamp is ideal. This time I thought I wouldn’t, as this is an assumption we make

for all the components. But previous exams always said this, so I understand it was a bit worrying if something was

different in this case.

a) The function uo/ui can be found by assuming that the opamp’s feedback is forcing the inverting input to
have potential ui (to follow the non-inverting input). Then voltage division of uo between the two impedances
provides the necessary relation between uo and ui: ui = uo

Ri

Ri+
RjωL

R+jωL

.

The desired network function requires this to be inverted to give the ratio uo/ui:
uo

ui
= 1 + jωL/Ri

1+jωL/R .

This could be written in different forms, e.g. by changing terms like R/L for a frequency ωx, or by keeping terms
(R+jωL) instead of making them dimensionless; the question did not state that the canonical form is required.

b)

Ignoring the ‘1+’ part of H(ω), there is a +20 dB/decade slope for ω < ωp, and a 0 dB/decade slope for ω > ωp.
In the region ω = ωz, the amplitude passes through 0 dB.

This shape can be understood by combining the separate effects of the numerator, jω/ωz, which has +20 dB/decade
slope everywhere, and the denominator, 1 + jω/ωp, which has −20 dB/decade slope at ω > ωp and flat 0 dB
at ω < ωp).
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To include the ‘1+’ term, notice that this ensures that |H(ω)| does
not fall below 1 (0 dB). (This claim depends on the main term not
having a negative real part; in our case this is true, as the main term’s
phase varies only from 90◦ to 0◦.

In the given situation of ωz ≪ ωp, all the region ω > ωz would have
|H(ω)| > 1, so the ‘1+’ is negligible. The Bode plot can be modified
to include the ‘1+’ by forcing the plot up to a constant 0 dB for ω < ωz.

One could also mention that the gain at the high frequencies, ω > ωp,
is approximately 20 log10

ωp

ωz
. Pedantically, we could say the points on

the horizontal axis should be marked as e.g. logωp instead of ωp.

Q5

a) Component C is irrelevant to the rest of the circuit, as it is in series with a current source. As we are only
interested in what happens outside the branch of I and C, we can replace these two by just I.

The circuit is then almost exactly a Norton equivalent already.
The Norton current source is IN = I, still in the same direction with regard to terminals ‘a’ and ‘b’.
The conductance 1

R , and susceptance 1
ωL , are combined into a single admittance, YN = 1

R + 1
jωL .

As an alternative (less conventional for Norton sources) we can write this as an impedance, ZN = jωLR
R+jωL .

The same result could be found by the more general way, of calculating short-circuit current and open-circuit
voltage.

b) The ac maximum power-transfer condition is that the load’s impedance (or admittance) equals the complex
conjugate of the impedance (or admittance, respectively) of the source.

So we want to make a load admittance Yx such that Yx = Y ∗
N = 1

R − 1
jωL , or equivalently, Yx = 1

R + j 1
ωL .

Notice that this admittance has a positive real part and positive imaginary part. A resistor has purely positive
real impedance or admittance. An inductor or capacitor has a purely imaginary impedance or admittance, which
can be negative or positive depending on the component and on whether we use impedance or admittance.

When connecting admittances in parallel, they sum directly to the total admittance (impedances sum when
series). The positive real and imaginary parts of the required admittance can therefore be independently
implemented with a resistor Rx and capacitor Cx. These give an admittance of 1

Rx
+ jωCx. We have to choose

Rx and Cx to give the required value of Yx.

Considering the real and imaginary parts separately, we see Rx = R, and jωCx = j 1
ωL , i.e. Cx = 1

ω2L .

The other way to implement the right load for maximum power would be a series connection of a resistor and
capacitor. In this case, the necessary values would be different from the ones needed for a parallel connection:
let’s call them Ry and Cy. The criterion would be Ry− j 1

ωCy
= Zy = Z∗

N = 1
Y ∗

N

. It is useful to get this last term

into a form where the real and imaginary parts are separate so that they can be equated with Ry and 1
ωCy

.

Hence 1
Y ∗

N

= 1
1
R
− 1

jωL

= jωLR
jωL−R = ω2L2R−jωLR2

R2+ω2L2 = Ry − j 1
ωCy

.

From this, Ry = ω2L2R
R2+ω2L2 , and −j 1

ωCy
= −j ωLR2

R2+ω2L2 , i.e. Cy = R2+ω2L2

ω2LR2 .

Notice that the choice of parallel components was simpler in this case, as it better matches the known compo-
nents R and L in the source circuit.

Q6

a) The independent sources have different frequencies. (It might have been clearer just to have written them
as ω1 and ω2, instead of ω and 2ω.) Superposition is therefore needed if we are going to take advantage of the
convenient method of steady-state sinusoidal analysis, which solves for a specific frequency.

Consider the contribution of each source separately, to the marked current ix(t).

Case 1. With just the current source active, the voltage source is a short-circuit. The circuit can be redrawn
with the irrelevant inductor omitted and the voltage source being a short-circuit; then we see that the current
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at frequency 2ω divides through R and C. Let’s define the current source in the frequency-domain as being a
current phasor I = Î 0, which means we’ve used a sine convention and peak-value convention.

Then by current-division, ix(1)(2ω) = I
1

j2ωC

R+ 1
j2ωC

= 1
1+j2ωCRI = Î√

1+4ω2C2R2
− tan−1 2ωCR

1 .

Now returning to the time-domain, remembering to use the same sine- and peak conventions as we used at the

start, ix(1)(t) =
Î√

1+4ω2C2R2
sin
(

2ωt− tan−1(2ωCR)
)

.

Case 2. Now with just the voltage source active, the current source can be ignored (open circuit), and the
circuit is simply a loop of U , R, C. Let us define the voltage source as U = Û θ, which means we’ve used a cosine
reference and peak values. Notice that the reference can be independently chosen for each superposition-case;
what is important is to choose the same reference for the time-frequency conversion as for the frequency-time
conversion, for any particular case, in order to get the correct time-functions.

The marked current in this second case is ix(2)(ω) =
U

R− j

ωC

= Û
√

R2+ 1

ω2C2

θ + tan−1 1
ωCR .

In the time-domain, using the cosine reference that we used when converting to the frequency-domain, this

current is ix(2)(t) =
Û

√

R2+ 1

ω2C2

cos
(

ωt+ θ + tan−1 1
ωCR

)

.

Finally: By superposition, the actual current ix(t) is the sum of both the above results,

ix(t) =
Î√

1 + 4ω2C2R2
sin
(

2ωt− tan−1 2ωCR
)

+
Û

√

R2 + 1
ω2C2

cos

(

ωt+ θ + tan−1 1

ωCR

)

.

b) The mean power (over multiple periods of the source frequencies) could be found by integrating instanta-
neous power over some time T during which a whole number of cycles of both frequencies have occurred, i.e.

P̄ = 1
T

∫ t+T

t
Ri2(t)dt.

But there is a more convenient method, power superposition, which is valid only for this situation where the
sources being handled by superposition have different frequencies.

Looking back to the frequency-domain expressions for ix(·)(ω) in the working of part ‘a)’, the active power in
each superposition case is easily found by squaring the magnitude of the current, multiplying by the resistance,
and dividing by 2 (because of peak values being used).

Summing the results for the two frequencies, this is
R

2

(

Î2

1 + 4ω2C2R2
+

Û2

R2 + 1
ω2C2

)

.
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