
KTH EI1120 Elkretsanalys (CENMI), Omtenta 2015-06-11 kl 14–19

Tentan har 9 tal i 3 delar: tre tal i del A (12p), tv̊a i del B (10p) och fyra i del C (18p).

Hjälpmedel: Ett A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet
eller datorutskrift; text eller diagram; stor eller liten textstorlek, . . . ).

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av
komponenter (t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara kända
storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla)
antas vara okända storheter. Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med
diagram och definitioner av variabler.

Tips: Dela tiden mellan talen. Senare deltal brukar vara sv̊arare att tjäna poäng p̊a: fastna inte p̊a dessa.
Det hjälper, ofta, att rita om ett diagram för olika tillst̊and eller med ersättningar eller borttagning av
delar som inte är relevanta för det sökta värdet. D̊a blir kretsen ofta mycket lättare att tänka p̊a och
lösa. Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Räknande av betyg: L̊at A, B och C vara de maximala möjliga poängen fr̊an delarna A, B och C i tentan,
d.v.s. A=12, B=10, C=18. L̊at a, b och c vara poängen man f̊ar i dessa respektive delar i tentan, och ak
vara poängen man fick fr̊an kontrollskrivning KS1, och bk poängen fr̊an KS2, och h bonuspoängen fr̊an
hemuppgifterna. Godkänd tentamen (och därigenom hel kurs) kräver:

max(a, ak)

A
≥ 0,4 &

max(b, bk)

B
≥ 0,4 &

c

C
≥ 0,3 &

max(a, ak) + max(b, bk) + c+ h

A+B + C
≥ 0,5.

Betyget räknas ocks̊a fr̊an summan över alla delar och bonuspoäng, d.v.s. sista termen ovan, med gränser
(%) av 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). Om tentan blev underkänd med liten marginal, s̊a kan
betyget Fx registreras, med möjlighet att f̊a betyget E om ett kompletteringsarbete är godkänt inom
n̊agra veckor efter tentamen.

Examinator: Nathaniel Taylor

Del A. Likström

1) [4p]

Bestäm de följande:

a) [1p] Effekten levererat till R3.

b) [1p] Spänningen u1 över R1.

c) [1p] Effekten levererat till R4.

d) [1p] Effekten levererat fr̊an källan U2.

R1

−

+

u1

R2

R3

+
−U1

+
−U2

I

g u4

R4

+− u4

1 / 11 KTH EI1120, Elkretsanalys för Energi och miljö (CENMI), Omtenta VT15, 2015-06-11



2) [4p]

Använd nodanalys för att skriva ekvationer
som skulle kunna lösas för att f̊a ut de
markerade nodpotentialerna v1, v2, v3, v4.

Du behöver bara visa att du kan översätta
fr̊an kretsen till ekvationerna: du m̊aste inte

lösa eller förenkla ekvationerna.

Som vanligt är det komponentvärdena
R1, I, g, h o.s.v. som är kända, medan de
markerade storheterna v1, ix, o.s.v. är okända.

+
− U

R4

R3

ix
g v3

R1 +
−

h ix

R2

I
v1 v2

v3

v4

3) [4p]

a) [1p] Bestäm förstärkarkretsens
ing̊angsresistans, d.v.s. Rin = vi/I.

b) [2p] Vad är Nortonekvivalenten av
kretsen, sett mellan polerna y och z?
Rita upp Nortonkällan och resistansen
för att visa sambandet mellan polerna
och källans riktning.

z

−

+

Ri

I

vi

Rf

x

R2

R1

y

c) [1p] Kortslutningen mellan opamp-utg̊angen och nod x är nu ersatt av ett motst̊and Ro. Vad är
Theveninekvivalenten av kretsen sett mellan polerna x och z? (Obs: inte y och z.)

Del B. Transient

4) [5p]

Bestäm:
iR(0

−)
uC(0

−)
iC(0

+)
uL(0

+)
iL(∞).

L1

C1

R1 iR(t)

L2

+− uL(t)

iL(t)

+
−U R2

R3 t = 0

C2

+

−
uC(t)

iC(t) I

R4

5) [5p]

Bestäm i(t), för t > 0.

C R

i(t)

t = 0

+
−

U
I
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Del C. Växelström

6) [4p]

Källornas värden är U(t) = Û sin(ωt) och I(t) = Î cos(ωt).

a) [3p] Bestäm ux(t).

b) [1p] Är det möjligt för källan I(t) att levererar
aktiveffekt? Med andra ord, kan positiva värden av Î, Û ,
L, C, ω väljas som gör att strömkällan leverera aktiveffekt
i denna krets? Förklara ditt svar.

I(t)

+
−U(t)

C

L

+

−

ux(t)

7) [5p]

a) [2p] Bestäm nätverksfunktionen H(ω) = vo(ω)
vi(ω)

av kretsen.

b) [2p] Visa att H(ω) i deltal ’a’ kan skrivas som

H(ω) =
k

1 + jω/ωx
,

där k och ωx är positiva reella tal (vid antagandet
att komponentvärdena ocks̊a är det).

−

+

R2

C

vo

R1

L

vi

c) [1p] Skissa ett Bode amplituddiagram av funktionen H(ω) fr̊an deltal ’b’.
Markera viktiga punkter och lutningar.

8) [5p]

Källan ger en växelspänning med vinkelfrekvens
ω, beskriven av fasvektorn U .

a) [3p] Betrakta den övre kretsen, med en ideal
transformator. Komponentvärdena R2 och C
är okända, men de andra komponentvärdena är
kända storheter. Välj R2 och C för att maximera
effekten som levereras till motst̊andet R2.

b) [2p] Betrakta nu den nedre kretsen, där en
ickeideal transformator beskrivs med kopplade
spolar. Alla sju komponentvärdena är kända
storheter. Bestäm i1.

ideal

n : 1

+
− U

R1

R2C

L1 L2

i1

+
− U

R1

R2C

M
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9) [4p]

Polerna a,b,c,n visar en anslutning till en
balanserad trefas spänningskälla, av vinkel-
frekvens ω och huvudspänning magnitud U :
|uan| = |ubn| = |ucn| = U√

3
. Som vanligt när

det gäller elkraft, är det ett effektivvärde.

Varje impedans Z representerar ett
motst̊and R och en spole L, parallell -
kopplade. Värdet av Zx ska bestämmas. De
kända storheterna är U , ω, R och L.

c
b

a

n
in

Z Z Z

Zx

Z
xZ

x

a) [2p] Vilken aktiv effekt och reaktiv effekt förbrukas av Y-lasten (de tre impedanserna Z)?

b) [1p] Bestäm ett slags komponent (spole, kondensator, eller motst̊and) för Zx, och dess värde, s̊a
att effektfaktorn (pf) av alla sex impedanser, sett fr̊an källan vid polerna a,b,c,n, blir 1.

c) [1p] Vad är strömmen in om impedansen mellan fas-b och neutralledaren ändras fr̊an Z till 2Z,
medan de andra tv̊a impedanserna i Y-lasten fortfarande är Z? Fasföljden är a-b-c, och fasspänningen
av fas-a kan tas som referensvinkeln, d.v.s. uan = 0.

Slut. Men slösa inte eventuell återst̊aende tid: kolla och dubbelkolla svaren.
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Solutions (EI1120, VT15, 2015-06-11)

Q1

a) Power into R3 is U2
1 /R3, as the resistor is parallel with the voltage source U1, which fixes its voltage

and makes all the other components irrelevant to the solution.

b) Voltage u1 is U1
R1

R1 +R2
, as the series pair R1 and R2 is in parallel with the voltage source U1 which

fixes their voltage and makes all other components than these three irrelevant to u1.

c) Power into R4 is I2R4. This resistor is in series with the independent current source I! It may not
be obvious immediately, but it can be seen by considering the whole region of { R1, R2, R3, U1 }: KCL
says that the current in from I has to pass out into R4. Alternatively, consider KCL on the right-hand
side of the circuit, for voltage source U2 and the dependent current source g u4.

d) The current through the voltage source U2 needs to be found, in order to find what power this
source delivers. Let’s define the source’s current as i2, out from the ‘+’ terminal. Then by KCL at the
node below U2, i2 = I + gu4. By seeing that the current from right to left in R4 must be −I, we get
u4 = −IR4. Substituting this into the earlier expression gives i2 = I (1 − gR4). The power out from
source U2 is therefore U2I (1− gR4).

Q2

We’ll show the “extended nodal analysis” (which I’ve sometimes called the simple method, because it
has few rules although it generates longer equation systems).

First, KCL at every node except ground. We’ll define the currents in the voltage sources as iα (in U)
and iβ (in the dependent voltage source), both being into the ‘+’ terminal.

KCL(1) : 0 =
v1 − v3
R1

+ I − g v3 (1)

KCL(2) : 0 =
v2
R2

− I + iβ (2)

KCL(3) : 0 =
v3 − v1
R1

− iβ +
v3
R3

+
v3 − v4
R4

(3)

KCL(4) : 0 =
v4 − v3
R4

+ iα. (4)

Then, include the relations of node potentials that the voltage sources determine,

v4 = U (5)

v2 − v3 = h ix. (6)

Finally, define controlling variables of dependent sources in terms of already defined quantities. In this
case, one source had a node potential as its controlling variable, so it needs no equation (it would be
just ‘v3 = v3’).

ix =
v3
R3

(7)

We will leave other methods, such as the supernode approach, as ‘an exercise for the reader’.

Q3

a) The node at the opamp inverting input (‘−’ input terminal) is held by the feedback to the potential
of the ‘+’ input, which we can see is fixed at zero potential. Therefore, I = vi−0

Ri
, meaning that the

input resistance seen by the current source is just Rin = Ri. An amplifier circuit’s input resistance is an
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important part of its specification: it determines how much current will be taken from whatever circuit
supplies the input.

b) Given that the inverting input must have zero potential (see above), vx
Rf

= − vi
Ri
, in which vi = IRi.

By voltage division, the open-circuit voltage across the specified terminals is uyz(oc) =
vxR1

R1+R2
.

These combine to

uyz(oc) =
−IRfR1

R1 +R2
,

which shows that the resistor Ri was not relevant to the output voltage (it is in series with a current
source). The short-circuit current is iyz(sc) =

vx
R2

, which in terms of known quantities is

iyz(sc) = −IRf/R2.

The Norton equivalent has a current source iyz(sc), and a parallel resistance
uyz(oc)

iyz(sc)
. After subsituting the

earlier expressions for the short-circuit and open-circuit properties, this resistance can be simplified to

uyz(oc)

iyz(sc)
=

R1R2

R1 +R2
,

which is simply the parallel resistance of R1 and R2. This result could have been expected by realising
that the opamp’s output has to adjust until the feedback requirement is satisfied: the voltage between
x and ground behaves as an ideal voltage source, even though node x is not directly connected to the
opamp’s output.

The diagram below shows the expected format of the final answer, where it is important to show not
only the values of the components but also the way the components are connected (parallel) and the
direction of the source with respect to the marked terminals. Note: an alternative is to draw the diagram

with the source in the opposite direction, and a negative sign in the expression for the source’s value.

IRf/R2
R1R2
R1+R2

y

z

Left: solution of ‘b)’.

Right: solution of ‘c)’.

+
−IRf

0Ω x

z

c) It is interesting to note that adding the further resistance Ro in series with the opamp output makes
no difference to the potentials or equivalent-source resistance seen at the terminals x and y. The reason is
described in part ‘b)’: the opamp feedback depends on the potential at point x, which gets automatically
adjusted to give the necessary feedback current in Rf so that the opamp’s inverting input follows the
non-interting input. If a larger Ro is added, the opamp just has to give an even greater voltage at its
output in order to obtain the necessary vx to force the inverting input to match the non-inverting input.

Between the point x and ground (z) there is therefore a voltage that is independent of how much current
we move between these terminals. This corresponds to a Thevenin voltage vx and a Thevenin resistance
of zero. In this case the method of finding an equivalent source by calculating short-circuit current will
not work easily: short-circuiting of x-z destroys the feedback, so the assumption that the opamp inputs
have the same potential is no longer true. Examples of methods that can be used instead are: write an
equation for the relation of ixz and uxz, that can be arranged in the form UT − RTixz = uxz; or reason
by the feedback argument given above.

Q4

For this sort of calculation it is very helpful to re-draw the circuit at different time-points, omitting
irrelevant parts and replacing components with simplifications (such as a short-circuit for an inductor in
steady state, or a voltage source for a capacitor immediately after a known equilibrium). The following
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solutions contain short descriptions of how the solution could be found. It is sometimes very hard to see
the solution in this way until systematically re-drawing.

iR(0
−) = −U/R1 KVL around U , R1, L1, treating L1 as short-circuit.

uC(0
−) = −IR4 Treat C2 as open-circuit: then all I passes up R4.

iC(0
+) = 0 Continuity of current in L2 means there is still no current through the switch at t = 0+.

Continuity of voltage in C2 means there is the same voltage uc as at t = 0−, which ensures that the
current flowing up in R4 is still I. By KCL above C2,I,R4 the current in C2 is therefore still zero at
t = 0+ (note that this current can change when the current through L2 has had time to change).

uL(0
+) = U + IR4 Because of continuity of current in L2, the ‘sides’ of the circuit (to the left and

the right of L2) see no change between t = 0− and t = 0+: it takes time before the inductor current can
change. A good choice of loop for KVL is L2, U , R3, switch, C2. In this, U is a fixed value, uC(0

+) =
uC(0

−) by continuity, R3 has zero current at t = 0+ (see previous solution) and therefore zero voltage,
and the closed switch has zero voltage (short-circuit). Hence, KVL gives −uL(0

+)+U+0+0−uC(0
+) = 0.

Comparing the times 0− and 0+ we see the voltage that was across the switch when it was open has
now appeared across L2 when the switch closed.

iL(∞) = U+IR4
R3+R4

After making substitutions for equilibrium (e.g. open circuit for C2) and remo-
ving irrelevant components in parallel with source U (R2 and all to the left), a single KCL equation
u
C
(∞)−U

R3
+I+

u
C
(∞)

R4
= 0, is sufficient to solve for the voltage uC(∞) across the components at the right,

and thus for iL(∞) =
U−u

C
(∞)

R3
.

Q5

After the switch opens, the current I of the current source must split between the capacitor and resistor.
Let’s define the voltage across the capacitor (with the positive reference upwards) as uc, and the current
in the capacitor (downwards) as ic. The resistor and capacitor are in parallel, so

i(t) =
uc(t)

R
.

The current in the capacitor is given by KCL as

ic(t) = I − uc(t)

R
.

The constitutive equation for a capacitor is ic(t) = C duc(t)
dt , which allows a differential equation in uc to

be written as

C
duc(t)

dt
= I − uc(t)

R
.

It would also have been possible to write a differential equation in another variable such as ic or i (which
is the variable we’re ultimately solving for); we have chosen to use the continuous variable, since this
makes it easy to handle the initial condition.

The initial condition has to be found from the equilibrium before the switch opened. With the switch
closed (t < 0) the voltage source was connected in parallel with the resistor and capacitor. The capacitor
voltage must therefore have been uc(0

−) = −U , by KVL. By continuity, uc(0
+) = −U .

The above differential equation and initial condition can be solved for uc(t) during t > 0. The alternative
method is to use the initial value (uc(0

+) = −U), the final value (uc(∞) = IR), and the time-constant
given by the capacitor and the equivalent source that it sees (τ = RC here) to write the solution directly.
Either way,

uc(t) = IR− (U + IR) e−
t

CR .

We were actually looking for i(t), the current through the resistor. This has already been seen to be
i(t) = uc(t)/R, so we can write

i(t) = I −
(

U

R
+ I

)

e−
t

CR .
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Q6

a) Let’s take a sine reference, so that U(t) = Û sin(ωt) becomes U(ω) = Û 0.
Then I(t) = Î cos(ωt) becomes I(ω) = Î π/2 = jÎ.

The phasor equation for KCL in the node above L, omitting for neatness the ‘(ω)’ after the phasors, is

−I +
ux
jωL

+ jωC (ux − U) = 0,

from which the sought voltage is

ux(ω) =
I + jωCU

j
(

ωC − 1
ωL

) =
Î + ωCÛ

ωC − 1
ωL

.

This expression has no imaginary parts. Its phase-angle is either 0 or π, depending on the sign of the
denominator. (If a different reference, such as cos(ωt) or sin(ωt+ π/2) had been used, then the phasor
ux(ω) would not have zero angle, but it would still have the special feature of being a particular angle
or that angle plus π.)

One way of writing the time-function is

ux(t) =
Î + ωCÛ

ωC − 1
ωL

sin (ωt) .

This looks rather different from what we often see when solving ac circuits and writing their time
functions. Normally we have phase-angles that can vary over a range; then we have written time-functions
in the form f(t) = A sin(ωt + φ) (or with cos instead), where A is positive real. Some square-roots are
usually needed for finding the magnitude A, and perhaps an inverse tangent for finding φ. In the case
above, we have instead allowed the term before the sin function to be positive or negative, to make
the phase-angle change by π when the difference between ωC and 1/ωL changes sign. The phasor was
already purely real, so the square-roots and inverse tangents were not needed. This choice seemed the
simplest way to get the right behaviour. Note that when ωC = 1/ωL there is a resonance at which ux
has unbounded magnitude.

b) The complex power out of source I is given by ux(ω)I(ω)
∗, which can be written −jÎux(ω). Substi-

tuting ux(ω) found in part ‘a’, we see that the result is a purely imaginary complex power, for any real
values of the variables. Thus, there is no active power delivered by the current source.

However . . . it is not sufficient to notice that the inductor and capacitor cannot absorb active power.
This is a true point, but it doesn’t prove what is asked: there is a further component (the voltage source)
in the circuit. It would in general be possible for a voltage source in a circuit to absorb active power
from a current source. Whether the active power is in or out or zero, depends on the sources’ phase
angles and possibly on other components in the circuit. In this particular case the specified phase-angles
of the sources, and the chosen components between them, prevent transfer of active power. You can
try changing the voltage source to Û cos(ωt) for an example where the current source can supply active
power (or absorb it, depending on the sign of the denominator term).

Q7

a) The potentials of the two opamp inputs are expected to be the same, due to the negative feedback.
Let this potential be v. Then, from KCL separately at the two inputs, we get two equations,

v − vi
jωL

+
v

R1
= 0, and

v − vi
R2

+ (v − vo) jωC = 0.

Eliminating v and rearranging,

vo
vi

= H(ω) =
(1 + jωCR2)− (1 + jωL/R1)

jωCR2 (1 + jωL/R1)
.

8 / 11 KTH EI1120 (Electric circuit analyis) Exam SOLUTIONS, 2015-06-11



This can be further simplified as shown in part ‘b)’.

b) Simplification of the result from part ‘a)’ gives,

H(ω) =
1− L

CR1R2

1 + jωL/R1
,

which can be written in the requested form of k
1+jω/ωx

by setting

k = 1− L

CR1R2
and ωx =

R1

L
.

This is a quite surprisingly simple function: swapping of the positions of the same components in this
circuit can result in more complicated Bode plots.

c)

10
0

10
1

10
2

10
3

10
4

10
5

ω [a.u.]

|H
(ω

)|
  

[d
B

]

20 log
10

 k      or      20 log
10

 ( 1−L/(R
1
 R

2
 C) )

− 20 dB/decade

R
1
/L      or     ω

x

This is an unusually easy Bode amplitude plot. It is just the curve of a single pole, shifted vertically by
k (in dB). The values k and ωx could be used, or their equivalent in terms of circuit quantities such as
R1/L. In case you wonder: ‘a.u.’ means ‘arbitrary units’. Normally the hand-written Bode plot would
use straight lines instead of showing the curve around ωx.

Q8

a) As C and R2 are able to be chosen, while other components are fixed, it is convenient to see this
maximum power question as having a source of U and R1, a load of C and R2, and a transformer
between. Probably the simplest way to start is to replace the source and transformer by an equivalent
source that represents what the load ‘sees’ at the terminals of the right-hand side of the transformer.
If we disconnect the load from the transformer, the open-circuit voltage of the transformer’s right-hand
coil is U/n. The resistance R1 is equivalent to a resistance R1/n

2 on the other side of the transformer.
Thus, the following substitution can be made:

ideal

n : 1

+
−U

R1

=⇒

+
−U

n

R1

n2
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Maximum power to the load is attained when the load impedance is the complex conjugate of the source
impedance. In this case, the source impedance is pure resistance, so we need R2 = R1/n

2 and C = 0.
As usual with maximum power calculations, the source voltage was not relevant to what load impedance
should be chosen, although it would affect how large the maximum power is.

b) Let’s define u1 as the voltage on the left coil (L1), with its reference (‘+’-terminal) up; and u2 on L2,
also with reference up. The current i1 is already defined; we can define i2 into the upper end of L2. Our
choice of definitions affects our intermediate equations, but should of course not affect the final answer.
(A little note: in this case, with passive components on one side, the dots aren’t actually important to
the final answer.)

Then, by KVL and the equations for mutual inductors,

(KVL, left) U = i1R1 + jωL1i1 + jωMi2

(KVL, right) u2 = jωL2i2 + jωMi1

(load) i2 = −u2

(

1

R2
+ jωC

)

Substituting to eliminate u2 and i2,

i1 =
U

R1 + jωL1 + jωM −jωM
1

1
R2

+jωC
+jωL2

=
U

R1 + jωL1 +
ω2M2(1+jωCR2)

R2−ω2CL2R2 + jωL2

.

Q9

a) We’re told that the Y-connected load consists of impedances Z, each formed from a parallel resistor
R and inductor L. Thus, 1

Z = 1
R + 1

jωL . The complex power into this load will be

S = 3

(

U√
3

)2

Z∗
= U2

(

1

R
+ j

1

ωL

)

,

from which the active and reactive parts are P = ℜ{S} = U2/R and Q = ℑ{S} = U2/(ωL).

b) The load in part ‘a)’ consumes reactive power (i.e. it has positive reactive power input), as expected
for an inductive load. In order to obtain pf= 1, we need to choose Zx to be a capacitive load, in order
to compensate the inductive part of the load Z. This compensation can (equivalently) be described as
‘generating’ a reactive power that supplies the inductive load, or consuming a negative reactive power
that cancels the positive consumption of the inductive load, or generating a cancelling current, or being
a parallel resonance of the inductors in Z and the equivalent-Y of the capacitors in Zx.

Since both of the three-phase loads are balanced, it’s easy to write the total reactive power of the two
loads. By equating this total to zero (perfect compensation) we can get an equation to solve for what
capacitance is needed. Let’s call the required capacitance C, so that Zx = 1/jωC. Then, by the condition
that QY +Q∆ = 0,

U2

jωL
+ 3

U2

Z∗
x

= j
U2

ωL
− 3U2jωC = 0,

from which C = 1
3ω2L

.

By working with powers, and taking advantage of balanced conditions, we avoiding nasty details such as
the phasor summation of currents in the delta-connection, the phasor summation between the currents
of the two loads, etc.

c) This is now an unbalanced load: one phase of the load (phase-b) has had its impedance doubled. That
means it’s certainly not as simple as the balanced load, where the currents in the star-point (neutral)
could be assumed to cancel as long as the source was balanced too. On the other hand, it’s not too

bad — the Y-load does have a neutral connection, so we know that the voltages across the three phase-
impedances (Z, 2Z and Z) are still balanced three-phase voltages: that’s easier than if there had been
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no neutral connection to the Y load, in which case the unbalanced load would cause the star-point to
have a non-zero potential which we’d have to find by KCL.

The method that’s simplest to devise for this problem (although not necessarily the simplest to solve)
is probably just to sum the three currents:

in =
uan
Z

+
ubn
2Z

+
ucn
Z

.

Inserting the given phase-angles of voltages, and doing some simplification based on summing phasors
(trigonometry that’s not shown here) this is

in =
U√
3
· 1

2Z

(

2e0 + e−jπ2/3 + 2e−jπ4/3
)

= − U

2
√
3Z

e−jπ2/3 =
U

2
√
3Z

ejπ
1/3,

or, written in the notation we’ve more often used,

in =
U√
3
· 1

2Z

(

2 0 + 1 − 2π/3 + 2 − 4π/3

)

= − U

2
√
3Z

− 2π/3 =
U

2
√
3Z

π/3.

Expressing Z in terms of known quantities R, L and ω (see part ‘a’), we find that |Z| = ωLR√
R2+ω2L2

and

Z = tan−1 R
ωL , from which

in =
U
√
R2 + ω2L2

2
√
3ωLR

π/3 − tan−1 R
ωL .

All the above fooling around was the algebraic way of just sketching a phasor diagram and saying “the
neutral current will have magnitude half as much as the current in the phases in the balanced load Z,
and an angle which is opposite the b-phase current in the balanced load Z”.

One way to simplify the problem before the equations is to think of the load when all impedances are
2Z . . . then it’s balanced (in = 0), but has half the normal current in each phase; then add a further 2Z
in parallel, in phase-a and phase-c, to make these each Z: the sum of these new ones is what flows in the
neutral, and we see it must be the opposite (180◦ shifted) of the current that would flow in phase-b for
a 2Z impedance, since adding a 2Z impedance in phase-b would make it a balanced load. How’s that
for twisted reasoning?

Since we appear to have a little space left on the page, let’s see how much less effort it is to handle
the complex numbers on a computer, if the values are known. We’ll assume some numeric values of the
known quantities.

U = 400, R = 13.225, L = 87e-3, w = 2*pi*50

a = exp(-1j*2*pi/3); % complex number to shift by -120degrees

uan = U/sqrt(3), ubn = a*uan, ucn = a*ubn

Z = 1 / ( 1/R + 1/(1j*w*L) )

% check that the balanced case really does have ~0 neutral-current

in_bal = uan/Z + ubn/Z + ucn/Z

% now solve the unbalanced case, and display in magnitude and degrees

in_unbal = uan/Z + ubn/(2*Z) + ucn/Z

fprintf(’\n** neutral current: magnitude %f A, phase %f deg\n’, ...

abs(in_unbal), angle(in_unbal)*180/pi );

The numbers were chosen so that the total 3-phase load would have nice round numbers for its total
active power and power factor, off a typical European low-voltage supply. The result for the balanced
case was a very small number (in_bal was of the order 10−15) meaning that it is zero as expected (apart
from numerical inaccuracy). The result for the unbalanced case was 9.7A at an angle of 34.2◦; unless
we further calculate the shift between voltage and current due to the load power-factor, or compare this
current with the phase-b current, we wouldn’t notice that this phasor of the neutral current is exactly
opposite the phase-b current. Sometimes it might be useful to understand more of ‘what is happening’,
for which the diagrams and equations can be more handy than the quick numerical approach.
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