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Tentan har 9 tal i 3 delar: tre tal i del A (12p), tv̊a i del B (10p) och fyra i del C (18p).

Hjälpmedel: Ett A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet
eller datorutskrift; text eller diagram; stor eller liten textstorlek, . . . . Det behöver inte lämnas in.

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av
komponenter (t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara kända
storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla)
antas vara okända storheter. Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med
diagram och definitioner av variabler.

Tips: Dela tiden mellan talen. Senare deltal brukar vara sv̊arare att tjäna poäng p̊a: fastna inte p̊a dessa.
Det hjälper, ofta, att rita om ett diagram för olika tillst̊and eller med ersättningar eller borttagning av
delar som inte är relevanta för det sökta värdet. D̊a blir kretsen ofta mycket lättare att tänka p̊a och
lösa. Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Räknande av betyg: L̊at A, B och C vara de maximala möjliga poängen fr̊an delarna A, B och C i tentan,
d.v.s. A=12, B=10, C=18. L̊at a, b och c vara poängen man f̊ar i dessa respektive delar i tentan, och ak
vara poängen man fick fr̊an kontrollskrivning KS1, och bk poängen fr̊an KS2, och h bonuspoängen fr̊an
hemuppgifterna. Godkänd tentamen (och därigenom hel kurs) kräver:

max(a, ak)

A
≥ 0,4 &

max(b, bk)

B
≥ 0,4 &

c

C
≥ 0,3 &

max(a, ak) + max(b, bk) + c+ h

A+B + C
≥ 0,5.

Betyget räknas ocks̊a fr̊an summan över alla delar och bonuspoäng, d.v.s. sista termen ovan, med gränser
(%) av 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). Om tentan blev underkänd med liten marginal, s̊a kan
betyget Fx registreras, med möjlighet att f̊a betyget E om ett kompletteringsarbete är godkänt inom
n̊agra veckor efter tentamen.

Nathaniel Taylor (073 949 8572)

Del A. Likström

1) [4p] Bestäm de följande storheterna:

a) [1p] spänningen ux

b) [1p] strömmen iy

c) [1p] effekten levererad av källan I1

d) [1p] effekten levererad av källan U2

R1

+−

U1

I1

I2

R3

+

−

ux

+
− U2 R4

iyR2

2) [4p]

Använd nodanalys för att skriva ekvationer
som skulle kunna lösas för att f̊a ut de mar-
kerade nodpotentialerna v1, v2, v3.

Du behöver bara visa att du kan översätta
fr̊an kretsen till ekvationerna: du m̊aste inte

lösa eller förenkla ekvationerna.

I

+−

U

K
ix

+ −

Hix

R1

ix

R2

R3

v1

v2

v3
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3) [4p]

Alla motst̊and i kretsen (R1···6) har resistans R.
Vissa motst̊and spelar ingen roll för lösningen.
Slutlösningarna ska uttryckas bara med storheterna I
och R, och förenklas.

a) [3p] Bestäm Theveninekvivalenten av kretsen, med
avseende p̊a polerna ’x’ och ’y’. Rita upp ekvivalenten,
med dessa poler markerade.

b) [1p] Ett sjunde motst̊and, R7, kopplas mellan
polerna x-y. Vilket värde måste det har för att den
maximala möjliga effekten ska försörjas fr̊an kretsen
till motst̊andet?

−

+

R6

x

y

+

−
u

R3

R4

R5

I

R1

R2

Del B. Transient

4) [5p] Bestäm följande fem storheterna:

a) [2p] u1(0
+) och i2(0

+).

b) [2p] u1(∞) och i2(∞).

c) [1p] energin i kondensatorn vid t → ∞.

C

+
−U

R1

+ −u1

R3

I · 1(−t)R2

i2(t)

L

5) [5p]

a) [4p] Bestäm u(t), för t > 0.

b) [1p] Bestäm iR(t), för t > 0.

Begynnelsevärdet u(0) = 0 kan antas.

I

+
−H i(t)

R
iR(t)

t = 0

C

+

−

u(t)

i(t)

Del C. Växelström

6) [5p]

Spolarna är kopplade, med ömsesediginduktans M .

a) [4p] Bestäm u(t).

b) [1p] Vilken aktiv effekt levereras av källan I1?

L1 L2

I1(t) = Î1 cos(ωt)

R1

+

−

u(t) C

I2(t) = Î2 sin (3ωt)

M
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7) [5p]

a) [2p] Bestäm kretsens nätverkfunktion,

H(ω) =
uo(ω)

ui(ω)
.

b) [1p] Visa att svaret till deltal ’a’ kan
skrivas i den följande formen,

H(ω) =
−jω/ω1

(1 + jω/ω2)(1 + jω/ω3)
.

−

+

R1 L1

R2 L2

+

−
uo

+

−

ui

c) [2p] Skissa ett Bode amplituddiagram av funktionen H(ω) fr̊an deltal ’b’.
Anta att ω1 ≪ ω2, och att ω2 ≪ ω3. Markera viktiga punkter och lutningar.

8) [3p]

Värmeelementen R2 matas genom en l̊ang, tunn ledning R1

fr̊an en växelspänningkälla med effektivvärde U och vinkel-
frekvens ω, genom en transformator som har kvoten n : 1.
Vilken effekt utvecklas i elementen R2?

n : 1

+
− U

R1

R2

9) [5p]

Polerna a,b,c och x,y,z i kretsarna nedan visar anslutningar till trefas spänningskällor.
B̊ada källor har vinkelfrekvens ω och huvudspänning U (därför blir t.ex. |uab| = U och |uxy| = U).
Som vanligt kan antas: källorna är ideala och balanserade, och effektivvärdeskala används.

a
?

b

?

c
?

R

L

R

L

R

L
x

ix

y
iy

z
iz

R

C = 1
ωR

a) [3p] I den vänstra kretsen, vilken komponent (typ och värde) ska användas där ’?’ är markerad,
om effektfaktorn sett fr̊an källan (vid polerna a,b,c) ska vara 1?

b) [1p] I den högra kretsen, vilken ström (ix, iy, iz) har lägste magnitud?
Fasföljden kan antas vara x,y,z; d.v.s. vy = vx e

−j2π/3.

c) [1p] Bestäm magnituden (absolutvärdet) av strömmen som du vald i deltal ’b’.

Slut. Men slösa inte eventuell återst̊aende tid: kolla och dubbelkolla svaren.
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Solutions (EI1120, VT16, 2016-06-09)

Q1.

a) ux = −I2R3

The series connection of I2 and R3 determines the current in R3 (by KCL), then the voltage across this
resistor is determined by Ohm’s law.
Be careful about the directions: the usual form of Ohm’s law, u = iR, assumes the ‘passive convention’,
i.e. that the directions of u and i are defined with i entering the resistor at the end where u is marked
positive.

b) iy = U2/R4

The parallel connection of U2 and R4 determines the voltage across R4 (by KVL), then the current
through this resistor is determined by Ohm’s law.

c) PI1 = −I1U2

The power delivered by a current source can be found by determining the voltage across the source,
and multiplying this by the source’s current: the voltage should be defined with its positive reference
(+-mark) where the current comes out of the source, else a negative sign is needed.
In this case, the source I1 is directly in parallel with U2, although it might not look it: try KVL around
the loop of these two components. But the positive reference of U2 is connected to the side of the current
source where I1 is defined as going in; the minus sign is needed to give the requestion direction of the
power (power delivered by source I1).

d) PU2 = U2

(

U2
R4

+ U2−U1
R1+R2

+ I1 − I2

)

This is a similar principle to part c, except that here we need to find the current delivered by the voltage
source U2, out from its positive-marked terminal. This is actually quite easily found, by KCL in the
node above or below the source. There are four parallel branches in which this current can flow. Two of
these have currents determined by current sources. We already know iy. The current in R1, R2 is easy
if the right loop is chosen for KVL, going round U2, U1, R1, R2. (Remember, we shouldn’t assume the
voltage across a current source is zero!)

Q2.

Extended nodal analysis (“the simple way”)

Let’s define the unknown currents in the voltage sources, with the positive direction going into the
source’s + terminal: iα in the independent voltage source U , and iβ in the dependent voltage source
Hix.

Write KCL (let’s take outgoing currents) at all nodes except ground:

KCL(1) : 0 =
v1
R1

− iβ −Kix (1)

KCL(2) : 0 =
v2
R2

+ iβ + I (2)

KCL(3) : 0 =
v3
R3

− I − iα. (3)

The voltage sources introduced the problem of two extra unknowns in the above equations; they can
solve this problem by providing two extra equations without further unknowns:

v3 = −U (4)

v2 − v1 = H ix. (5)
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The controlling variables of the dependent sources need to be defined in terms of the other known or
unknown quantities. The controlling variable of both dependent sources is the current ix, marked in R1;
this is

ix =
v1
R1

. (6)

The above is a sufficient set of equations for a solution.

Q3.

a) UT = 2RI and RT = R.
The Thevenin voltage is the voltage u in conditions of open-circuit at x-y. In open-circuit, this is the
same as the opamp’s output voltage, as no current passes in R6 in this situation. Similarly, there is no
voltage across R3, as no current flows in the opamp’s inputs: so the non-inverting input is held to zero
potential. We assume that the negative feedback on an ideal opamp causes the two inputs to have equal
potential, which means there is also zero voltage at the inverting input. By Ohm’s law again, no current
flows in R2. From KCL at the node of the inverting input, the current I must flow through R5 and R4,
as R2 and the inverting input have zero current.
The opamp’s output is like an ideal voltage source: it is whatever value is needed in order to hold the
inverting input to zero, through the feedback; the output current at x-y does not influence the feedback
circuit. So the voltage u is simply 2RI − iR, where the iR term is the output current i (x-y) and the
resistance R of component R6.

b) R7 = RT = R. It’s a classic dc maximum-power case: make the load equal to the source resistance.

Q4.

a) u1(0
+) = −IR1R2

R1+R2
, and i2(0

+) = IR1
R1+R2

.

b) u1(∞) = 0, and i2(∞) = 0.

c) Energy in capacitor C as t → ∞: 1
2CU2.

Q5.

a) u(t) = IR
(

1− e
−

t

(R−H)C

)

(t > 0).

This is probably easiest by writing an equation that relates u(t) and i(t) without the capacitor present.
A Thevenin equivalent can then easily be obtained, from which the time constant and final value are
found.
By KCL, iR(t) = I − i(t).
By KVL, u(t) = Hi(t) +RiR(t).
Thus, u(t) = Hi(t) +R(I − i(t)) = IR+ (H −R)i(t).

Compare this to the equation for a Thevenin source, with the same definition directions of u and i:
u = UT −RTi. This implies that the capacitor (after t = 0) sees a source with Thevenin voltage IR and
Thevenin resistance R−H. The time-constant is thus C(R−H), and the final value of u(t) is IR.

Alternatively a differential equation can be obtained by substituting i(t) using the capacitor’s relation

i(t) = C du(t)
dt into the earlier expression for u(t), to get it entirely in terms of u(t) and du(t)

dt instead of
u(t) and i(t).

b) iR(t) = I − C du(t)
dt = I

(

1− R
R−H e

−

t

(R−H)C

)

(t > 0).

The current in the capacitor is found from i(t) = C du(t)
dt , then the current iR(t) is found from KCL.
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Q6.

[An error in the sign of the second term of Q6a solution has lain undiscovered for 9 months: thank you
for pointing it out! The answer is now made more thorough, too.]

a) The solution of part ‘a’ is made easier by the fact that each of the two mutually-coupled inductors
is in series with a current source. The equation describing two coupled inductors, in the time-domain,
is ux(t) = Lx

d
dt ix(t) + M d

dt iy(t) to find the voltage induced in inductor x due to currents in both
inductors x and y. We’ve more usually seen this equation in its frequency-domain form, as ux(ω) =
jωLxix(ω) + jωMiy(ω). We must of course be careful about signs: we must check how the current
directions we’ve defined in each inductor are related to the voltages and to the dots.

If the currents in both of the coupled inductors are known, then we can immediately write the equation
for the voltage on one of the inductors, independently of the equation for the voltage on the other
inductor. (It is more difficult if one or both of the currents is not determined at the start, but must be
solved based on the mutual-inductor equations for the voltages on both inductors and the equations for
the things connected to each side. If you want an example like that, try replacing both current sources
with voltage sources, which gives two mutual inductance equations and two KVL equations to solve!)

Method 1.

In our lucky case with both currents determined, we could actually solve for u(t) directly in the time-
domain, perhaps more easily than using ac analysis (jω-metoden), by combining the mutual inductance
equations with what we studied in the first ‘transients’ topic. Let’s define currents i1(t) and i2(t) in the
two inductors, both going in at the ‘top’, so they both come out at the dots. Then i1 and the marked
u follow the passive convention; with this, and the same direction relative to the dots, we can write the
equation for u(t) with no negative signs needed, and then identify the currents in terms of the sources
in the circuit,

u(t) = L1
di1(t)

dt
+M

di2(t)

dt
= L1

dI1(t)

dt
−M

dI2(t)

dt

into which we substitute the given functions for the current sources, and differentiate,

u(t) = L1
d

dt
Î1 cos(ωt)−M

d

dt
Î2 sin(3ωt) = −ωL1Î1 sin(ωt)− 3ωMÎ2 cos(3ωt).

There was no need of defining a ‘u2’ across the other inductor.

With a slightly more difficult circuit, such as with voltage sources or with the resistor in parallel instead
of in series with L1, this direct use of differentiation would not be so straightforward, because the currents
through the inductors wouldn’t be immediately known. Then it would become actually desirable to do
ac analysis instead of using a time-domain short-cut.

Method 2.

Now we will show the ac way of considering the original question, to get the same answer as above.

We want to find the voltage u, across inductor L1. There are two independent sources in the circuit.
They are sinusoidal, so we can use ac analysis for the steady-state behaviour of the circuit. They have
different frequencies so we can’t use ac analysis for both at the same time: a “phasor solution” is about
specifying amplitudes and phases (angles) of sinusoidal quantities at one specific frequency. However,
we can use superposition to solve for the case where sources at one frequency are active and the others
are zero, and then vice versa. In our case, a zero source (zero current-source) means no current in the
respective series-connected inductor, which makes the solution quick and convenient.

Superposition State 1: I1 active, I2 set to zero.
The frequency is ω. Let’s take a cosine reference. We have therefore a source I1(ω) = Î1 0, putting
current into the top of the coil L1. At the other side, source I2 is zero, i.e. an open circuit, so no current
flows in coil L2.

Based on the frequency-domain equation for the voltage on one of two mutually coupled inductors,

u(1)(ω) = jωL1I1(ω) + jωM · 0 = jωL1Î1,
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and after converting this back to a time-function, we get

u(1)(t) = ωL1Î1 cos(ωt+ π/2) = −ωL1Î1 sin(ωt).

Superposition State 2: I1 set to zero, I2 active.
The frequency is 3ω. There’s no need to use the same reference as above – we have to do the whole
time→frequency→time conversion separately for each frequency. So let’s choose a sine reference. We
have then a source I2(ω) = Î2 0, putting current into the bottom of the coil L2; I prefer to see this as
a source −I2(ω) = Î2 π putting current into the top of that coil, so that the mutual inductor equations
don’t need any negative sign. At the other side, source I1 is zero, i.e. an open circuit, so no current flows
in coil L1.

Using the same equation as before,

u(2)(ω) = jωL1 · 0 + j3ωMÎ2 π = 3ωMÎ2
3π
2

where the subscript ‘(2)’ shows that it’s the part of u due to the superposition state 2 (not that it’s the
voltage on the second inductor L2). Converted into a time-function, this is

u(2)(t) = 3ωMÎ2 sin (3ωt+ 3π/2) = −3ωMÎ2 sin (3ωt+ π/2) = −3ωMÎ2 cos(3ωt).

Combine the Superposition States.
The final step is to combine the superposition results, in the time-domain. (We reiterate: this cannot
be done with the phasors, since we have two ‘different species of phasors’, i.e. at different frequencies;
phasor calculations are based on the assumption of one frequency.)

u(t) = u(1)(t) + u(2)(t) = −ωL1Î1 sin(ωt)− 3ωMÎ2 cos(3ωt).

b) The active power delivered by source I1 is: 1
2 I

2
1R1.

The long way of finding this is to find the complete voltage across the source I1(t), and thus to find the
source’s power. Let’s call this voltage U1(t), defined according to the active convention, i.e. the ‘+’-side
is where the current I1(t) is defined as coming out.

Then, by KVL in the left loop,

U1(t) = R1I1(t) + u(t) = R1Î1 cos(ωt)− ωL1Î1 sin(ωt)− 3ωMÎ2 cos(3ωt),

which can be written all in terms of cos as

U1(t) = R1Î1 cos(ωt) + ωL1Î1 cos(ωt+ π/2)− 3ωMÎ2 cos(3ωt).

The instantaneous power (the actual power-output at each instant, as a time-function) is simply the
product of U1(t) and I1(t),

P (t) = Î1 cos(ωt)
(

R1Î1 cos(ωt) + ωL1Î1 cos(ωt+ π/2)− 3ωMÎ2 cos(3ωt)
)

If you expand out all the cos terms, using the relation cosα · cosβ = 1
2 [cos(α+β) + cos(α−β)], you will

get six terms, of which only one is a constant; the rest are all sinusoidal, and therefore have a mean value

of zero. The constant term is 1
2 Î1

2
R1, which gives the power that’s actually delivered over significant

numbers of periods, ignoring the ‘oscillating’ power over time. This mean value is what active power in
ac circuits describes. Using the cosα · cosβ relation, we see that if cos(ωt) is multiplied by cos(nωt+φ),
there is only a non-zero mean value if n = 1 and φ 6= ±π/2.

The ac way to approach this power question is to talk about the “power superposition principle”. What
we have normally seen in ac power questions is that all independent sources, and therefore all other
quantities in a linear circuit, are sinusoidal at one frequency. In our present question, however, there are
sources with different frequencies. As shown above, the voltage across one of the current sources is a sum
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of two freqencies. Power superposition says that the power (active power) into or out of a component is
the sum of the powers due to each frequency in the circuit acting alone. Notice that this is not true for
superposition of powers due to sources with the same frequency, as can easily be verified for a simple
case like two current sources and a resistor all in parallel. It’s only true for the different frequencies,
because all terms that involve a product of sinusoids (i.e. current and voltage across a component) at
different frequencies will have a zero mean and thus not contribute to the active power transfer.

Using the power-superposition approach we consider the power from source 1 due to each source sepa-
rately. With I2 set to zero, the second inductor L2 can be ignored; the circuit is just the source I1, in
series with a resistor R1 and inductor L1, so the source delivers the power that is used by the resistor
1
2 Î1

2
R1, since no active power is used in an inductor. The factor 1/2 is due to Î1 being a peak value.

With I1 set to zero, there is no current in this source (!) so it cannot be consuming or providing any
active or reactive power.

Notice a careful silence about reactive power. This is not a well defined quantity in the way that active
power is (related to average rate of energy transfer); it can be, and is, defined in lots of ways for different
purposes. We’ve stayed mainly with complex power in single-frequency circuits with two-terminal situ-
ations; then reactive power is pretty well defined. Start adding further wires through which the power
flow is to be defined, or having more than one frequency, and different opinions will arise.

Q7.

a) This is a classic case of an inverting amplifier, except that each of the two main impedances (input,
and feedback) consists of two components.

For an inverting amplifier with input impedance Z1 and feedback impedance Z2, the sought relation
is uo

ui
= −Z2

Z1
, which can be found from KCL at the node of the inverting input, with the standard

opamp-with-negative-feedback assumption that this node is at the same potential as the non-inverting
input (zero).

Replacing the impedance symbols with the component values (series for the input, parallel for the
feedback),

uo
ui

= −
jωL2R2

R2+jωL2

R1 + jωL1
=

−jωL2R2

(R1 + jωL1) (R2 + jωL2)

At this point, you might have chosen to make further manipulations to get the expression closer to what
we show below for part ‘b’.

b) Continuing the manipulation from part ‘a’,

uo
ui

=
−jωL2R2

(R1 + jωL1) (R2 + jωL2)
=

−jωL2/R1

(1 + jωL1/R1) (1 + jωL2/R2)
.

This final expression becomes the requested form, if we substitute ω1 = R1/L2, ω2 = R1/L1, ω3 = R2/L2;
note that the definitions for ω2 and ω3 could be swapped, without making the solution wrong, as both
denominator terms have similar form.

c) Sketch a Bode amplitude plot of H(ω), assuming ω1 ≪ ω2 and ω2 ≪ ω3.

This is the same as in the 2016-03 EI1120 exam, except that here the relation between ω1 and ω2 is not

specifically defined as 100, but just as a large difference.
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The Bode amplitude plot is shown on the
right: the frequency is in arbitrary units,
and the ratios ω2/ω1 and ω3/ω2 have been
chosen as 100.

The main features that should be marked
are the 0 dB point at ω = ω1, the changes
of gradient at ω2 and ω3, and the gra-
dients of ±20 dB/decade. Including the
0 dB/decade gradient in the pass-band is
nice but not necessary, as it’s obvious for a
flat line!

The classic asymptotic Bode amplitude
plot has just the straight lines; the furt-
her curve shows the actual function plotted
numerically.
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Q8.

PR2 = n2R2

(

U

R1 + n2R2

)2

.

Several methods can be chosen here. Probably the easiest is to replace R2 and the ideal transformer with
a simple model that shows how these two components “look” to the rest of the circuit. In other words,
what does the transformer (with R2 connected to its secondary) look like at its primary terminals?
Because an ideal transformer has no losses, the power going into the transformer’s primary is the same
as the power into R2, so if we find this power we have our solution directly.

A resistor R seen from the primary of a N1 : N2 transformer appears as (N1/N2)
2R. In our case, the

primary of the transformer appears as a load of n2R2. The current around the primary circuit is U
R1+n2R2

;

by the expression for power dissipation, i2R, the above solution for the power can be obtained.

Q9.

a) ‘?’ = C = 3
ω2L

.
It probably simplifies the thinking if we convert this balanced 3-phase ∆-load (R,L) to an equivalent Y
load (R/3,L/3). Then, unity power-factor (pf= 1) can be achieved by making the unknown component
cancel the inductor. It should therefore be a capacitor, with value 1

jωC = −jωL/3.

b) Current iy has the lowest magnitude. This may seem strange, as line y carries the currents of both
loads (R and C) whereas the other lines carry just one or the other current. The current magnitudes in
these two components are identical, due to the given relation C = 1

ωR . The reason why the sum is less
than either of the separate values is that there is a large phase-shift, quite close to 180°, between these
currents.
The voltage between lines y-x has a 60° displacement compared to the voltage between lines y-z: think
of the triangle of line-voltages. The current in the capacitor has a 90° phase shift (leading) compared to
its voltage, whereas the current in the resistor is in phase with its voltage. The result is that these two
currents, of identical magnitude, have a 150° phase-shift, giving a sum that is less than the individual
values. If the capacitor and resistor were swapped, the current in line y would be almost twice the current
in each of the other lines, as the 60° and 90° shifts would then partially cancel instead of adding.

c) |iy| = U
R

√

2−
√
3

As described above, the two branches (R and C) supplied by line y have currents that have equal mag-
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nitude but a 150° phase-shift. The phasor addition to find the magnitude of two phasors with magnitude
1 and relative angle 150° can be done numerically as abs( 1+exp(1j*150*pi/180) ) = 0.52; this
means the current in line y is about half the magnitude of the currents in lines x and z. To calculate it
analytically, we can define one phasor to be purely real, and the other to be split into real and imaginary
parts corresponding to cos and sin of 150°,

|1 + 1 150°| = |1 + cos 150° + j sin 150°| =
∣

∣

∣

∣

∣

1−
√
3

2
+ j

1

2

∣

∣

∣

∣

∣

=

√

√

√

√

(

1−
√
3

2

)2

+

(

1

2

)2

=

√

2−
√
3.

Multiplying this factor by the current magnitude in each component, U/R, the above solution for iy is
obtained.
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