
KTH EI1110 Elkretsanalys (CELTE) TEN1 2016-10-28 kl 08–13

Hjälpmedel: Ett A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet
eller datorutskrift; text eller diagram; stor eller liten textstorlek, . . . . Det behöver inte lämnas in.

Tentan har 5 tal i tv̊a sektioner: 3 i sektion A (12p), och 2 i sektion B (10p). Godkänd kräver:

max (a, ak)

A
≥ 40% &

b

B
≥ 40% &

max (a, ak) + b+ p

A+B
≥ 50%

där A=12 och B=10 är de maximala möjliga poängen fr̊an sektionerna A och B, a och b är poängen
man fick i dessa respektive sektioner i tentan, ak är poängen man fick fr̊an KS1 vilken motsvarar tentans
sektion A, och p är bonuspoäng fr̊an hemuppgifterna, motsvarande högst 5% (1,1p); funktionen max()
tar den högre av sina argument.

Betyget räknas fr̊an summan över b̊ada sektioner, igen med bästa av sektion A och KS1, max(a,ak)+b+p
A+B .

Betygsgränserna är 50% (E), 60% (D), 70% (C), 80% (B), 90% (A).

Om inte annan information anges i ett tal, ska: komponenter antas vara idéala; angivna värden av
komponenter (t.ex. R för ett motst̊and, U för en spänningskälla, k för en beroende källa) antas vara
kända storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller en
spänningskälla) antas vara okända storheter.

Lösningar ska uttryckas i kända storheter, och förenklas. Var tydlig med diagram och definitioner.

Dela tiden mellan talen — senare deltal brukar vara sv̊arare att tjäna poäng p̊a . . . fastna inte!

Kontrollera svarens rimlighet genom t.ex. dimensionskoll eller alternativ lösningsmetod.

Lycka till! Nathaniel Taylor (073 949 8572)

Del A. Likström

1) [4p] Bestäm följande storheterna:

a) [1p] effekten absorberad av R2

b) [1p] effekten absorberad av R3

c) [1p] effekten levererad av U1

d) [1p] effekten absorberad av U2

Observera att ’absorberad’ eller ’levererad’
bara är val av effektens referensriktning; vi
p̊ast̊ar inte att vi vet p̊a förhand om en källa
levererar eller absorberar effekt (den beror
ju p̊a komponentvärdena).
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2) [4p]

Använd nodanalys för att skriva ekvatio-
ner som skulle kunna lösas för att f̊a ut de
markerade potentialerna v1, v2, v3, v4, v5.

Du behöver bara visa att du kan översätta
fr̊an kretsen till ekvationerna: du m̊aste

inte lösa eller förenkla ekvationerna.
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3) [4p]

a) [3p] Bestäm Theveninekvivalenten av
kretsen, med avseende p̊a polerna a-b.

b) [1p] Bestäm den största effekten som kan
f̊as ut fr̊an kretsen mellan polerna a-b.
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Del B. Transient

4) [5p]

Bestäm följande storheter, vid de
angivna tiderna.

a) [1p] t = 0−

Effekten försörjt av källan I.

b) [2p] t = 0+

Strömmen ia.

c) [2p] t → ∞

Energin lagrad i L1 och i C1.

I

R1

L1

R2

C1

R3

R5

+
−U

C2

R4

ia
L2

t=0

5) [5p]

Bestäm ix(t) for t > 0.

(Obs. minustecken i stegfunktionens argument!)
I · 1(−t) C

+

−

u(t)

+ −

H ix

R

ix

Slut. Men slösa inte eventuell återst̊aende tid: kolla och dubbelkolla svaren.
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Solutions (EI1110 TEN1 HT16, 2016-10-28)

Q1.

a) PR2,in =
U2
1

R2

KVL: parallel connection of R2 and U1 determines the voltage across R2.

b) PR3,in = I2R3

KCL at opamp’s non-inverting input determines the current through R3.

c) PU1,out = U1

(

I +
IR3

R1
+

U1

R2

)

or perhaps you prefer the form PU1,out =
U2
1

R2
+ U1I (1 +R3/R1).

The current out of this source’s +-terminal, multiplied by the source’s voltage, gives the power supplied
by the source. By KCL this current is the sum of the currents in R1, R2 and R3. The currents in R2 and
R3 can be seen based on the previous two solutions. The current in R1 can be found by KVL, considering
that the opamp’s inputs have the same potential if it’s an ideal opamp with negative feedback: then the
voltage across R1 is IR3, so the current through R1 is IR3/R1 (left to right).

d) PU2,out =
−U2IR3

R1
The current is R1 is already found, in part ‘c)’ as IR3/R1. As nothing goes into the opamp input, this
must also pass through source U2, coming out of the source’s +-terminal. The energy absorbed by the
source is then the negation of this current and the source’s voltage.

Q2.

Example Method i) Extended nodal analysis (“the simple way to write”)

Let’s define the unknown currents in the voltage sources: iα into the + terminal of the independent
voltage source U , and iβ into the + terminal of the dependent voltage source K ux.

Write KCL (let’s take outgoing currents) at all nodes except the earth node:

KCL(1) : 0 =
v1
R1

+ I2 − I1 (1)

KCL(2) : 0 =
v2
R2

− I2 +Gv4 (2)

KCL(3) : 0 = iα + I1 +
v3 − v4
R4

+
v3 − v5
R3

(3)

KCL(4) : 0 =
v4 − v3
R4

−Gv4 − iβ (4)

KCL(5) : 0 =
v5 − v3
R3

+ iβ (5)

Each voltage source relates a pair of node potentials.

v3 = U (6)

v5 − v4 = K ux (7)

The controlling variables of the dependent sources are defined in the circuit diagram by where they are
marked, e.g. ux is the voltage across resistor R4 with positive reference side towards I1. We have to
define the controlling variables as equations. Although we have two dependent sources, only one of them
has a controlling variable specially written for it: the other is controlled by a node potential, which we
already have as a variable in our equations. So we just need to defined ux:

ux = v3 − v4 (8)
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The above equation-system is sufficient for a solution.

Example Method ii) Simplifications (including supernodes) to reduce the equations

Node 3 can be treated as part of a supernode together with the earth node. Its potential is known to be
fixed as U .

Nodes 4 and 5 can be a supernode: we’ll define v4, meaning that node 5 has potential v4 + Kux. To
avoid this further unknown (ux) we can express it from the diagram as v3 − v4, which we can write as
U − v4. After all this, the potential at node 5 is:

KCL(1) : 0 =
v1
R1

+ I2 − I1 (1)

KCL(2) : 0 =
v2
R2

− I2 +Gv4 (2)

KCL(4&5) : 0 =
v4 − v3
R4

+ (1−K)
v4 − v3
R3

−Gv4 (3)

To fulfill the requirement (an equation system that could be solved to find all the potentials) we should
state the earlier definitions of how the potentials in a supernode relate to each other,

v3 = U (4)

v5 = KU + (1−K)v4 (5)

Q3.

a) The Thevenin equivalent is the following:

+
−UT = 2U

RT = 2R
i

a
+

−

u

b

If we define as u the voltage of terminal ‘a’ relative to terminal ‘b’, and as i the current coming out of
the circuit’s terminal ‘a’, then KCL on the three parallel branches within the circuit tells us that

u− 2U

2R
− I + I + i = 0,

from which
u = 2U − 2R i (compare to u = UT −RT i).

An alternative way is to ‘set independent sources to zero’ and find the Thevenin resistance directly,
then to find the open-circuit voltage or short-circuit current. We normally suggest finding open-circuit
voltage if wanting a Thevenin equivalent, as is the same as the Thevenin voltage so no further algebra
is needed. But in this circuit it’s also very quick to find the short-circuit current (U/R) and to calculate
the Thevenin voltage from this, by UT = iscRT .

b) The maximum possible power out from the circuit occurs when the terminal voltage is half of its
open-circuit value. Equivalently, we can say it occurs when the current is half of its short-circuit value
(this is true precisely when the voltage is half of its open-circuit value).
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Hence this maximum power is
uoc
2

·
isc
2

=
UT

2
·
UT

2RT

=
U2

T

4RT

.

Putting in the values for our circuit,
U2

T

4RT

=
(2U)2

4(2R)
=

U2

2R
.

Q4.

a) Equilibrium, t = 0−.

In equilibrium, the subsitutions based on du(t)
dt = 0 and di(t)

dt = 0 for all voltages and currents give the
following circuit.

I

R1

(L1)

R2

(C1)

R3

R5

+
−U

(C2)

R4

ia (L2)

From this, we see the power delivered from source I is just the power it provides to the parallel combi-
nation of R1 and R2,

PI(0
−) = I2

R1R2

R1 +R2

b) Immediately after that equilibrium, by continuity, t = 0+.
We can draw the resulting circuit, with the switch being an open circuit, and with capacitors and
inductors replaced by their equilibrium values of voltage and current that can be found from the diagram
in part ‘a)’.

I

R1

IR2
R1+R2

R2

+ −

IR1R2
R1+R2

R3

R5

+
− U

u = 0

R4

ia

U/R5

This circuit can be simplified a bit by removing some components that are irrelevant to the sought
quantity of ia, and combining components where possible. The irrelevances in this case are components
in series with current sources. The combining is then possible for two parallel current sources.
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I − IR2
R1+R2

= IR1
R1+R2

R2

+ −

IR1R2
R1+R2

iaR3

R4
U
R5

Now the above circuit tempts us to do some source transformation to get a single loop. (Other options
are superposition, or some form of nodal analysis, probably with two unknowns.)

+
−IR1R2

R1+R2

R2

+ −

IR1R2
R1+R2

iaR3

+
− U R4

R5

R4

In this simplified circuit, KCL tells us that the same current ia passes all around the loop.
KVL gives an equation for the current,

iaR2 − I
R1R2

R1 +R2
+ iaR3 + iaR4 − U

R4

R5
+ I

R1R2

R1 +R2
= 0 (KVL)

which gives the solution

ia(0
+) =

UR4

R5 (R2 +R3 +R4)
.

c) Equilibrium, t → ∞.

I

R1

(L1)

R2

(C1)

R3

R5

+
−U

(C2)

R4

ia (L2)

The energy in L1 depends on the current in this component: WL1 = 1
2 L1 i

2
L1
.

In this equilibrium state, that current is as in the previous equilibrium (in equilibrium the left part of
the circuit is isolated from the right by the open-circuit of C1; and the left part has not had any change).

WL1(∞) =
1

2
L1

(

IR2

R1 +R2

)2

.
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The energy in C1 depends on the voltage across this component: WC1 = 1
2 C1 u

2
L1
.

In this final equilibrium the voltage if different from the earlier equilibrium: looking at the above diagram
we see the switch has a voltage U across it, instead of 0 when it was a short-circuit (closed) at t < 0.

Taking KVL around the loop of R2, R3, L2, U , R5, C1, we get

uC1(∞) =
IR1R2

R1 +R2
+ 0 + 0 + U + 0 = U +

IR1R2

R1 +R2

The direction of uC1 is not important: it will be squared when we use it to find the energy (only the
magnitude of capacitor charging is important). But the relative directions of the KVL components are of
course important: we must ensure that the U and IR1R2

R1+R2
terms are taken in the correct relative directions

when we go around the loop.

The solution for energy in C1 is then,

WC1(∞) =
1

2
C1

(

U +
IR1R2

R1 +R2

)2

.

Q5.

Before the change, t = 0−, there is an equilibrium.

The current source is active, i.e. I · 1(−t) = I at t = 0−.

I

+

−

u(t)

+ −

H ix

R

ix

By KCL the full current I passes down through R, since the capacitor in equilibrium is open-circuit.
Hence ix = I, which determines the dependent source’s value to be HI.
Then KVL around the right-hand loop gives

u(0−) = I(R−H).

After the change (t > 0, the period we’ve been asked about) the current source is zeroed, i.e. I ·1(−t) =
0 at t > 0. The circuit simplifies to the following, with an initial condition of u known from the above.

C

+

−

u(t)

+ −

H ix

R

ix

By KVL, Hix + u− Rix = 0. This has two unknowns, but as the current ix is also the current passing
upward in the capacitor, we can further include the relation of u and i in a capacitor (ix = −C du

dt ) to
get a differential equation in just u or just ix. We’ll take the standard approach of solving first for the
continuous variable, which is u:

−C(H −R)
du

dt
+ u = 0 i.e.

du

dt
+

1

C(R−H)
u = 0
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This has a general solution u(t) = ke−t/(R−H)C .

From the earlier calculation of u(0−), and by continuity, we can write

I(R−H) = u(0−) = u(0+) = ke
−

0
C(R−H) = k so k = I(R−H).

The solution for u(t) is therefore

u(t) = I(R−H) e
−

1
C(R−H)

t
(t > 0).

But it was actually ix(t) we wanted to find! It is ix(t) = I e
−

1
C(R−H)

t
(t > 0).

One way to find this from u(t) is by KVL,

ixR− ixH − u = 0 =⇒ ix(t) =
u(t)

R−H
= I e

−
1

C(R−H)
t

(t > 0)

Alternatively we could start from the capacitor equation, being careful about the negative sign that
comes from the relative directions in which u and ix are defined,

ix = −C
du

dt
= −C

−1

C(R−H)
e
−

1
C(R−H)

t
= I e

−
1

C(R−H)
t

(t > 0)

* * *

Several variations of this solution could have been used instead.

One is the initial value, final value, time-constant method for first-order linear systems, giving y(t) =
y∞ + (y0 − y∞)e−t/τ for some generic quantity y which could represent for example u or ix.

The time-constant τ = C(R − H) can be found from the Thevenin resistance RT of the circuit the
capacitor ‘sees’. The circuit (t > 0) has no independent source, so the open-circuit voltage and short-
circuit current are both zero; this prevents us using the classic short-open method of finding RT . The
method of setting independent sources to zero and finding the equivalent resistance is not immediately
helpful, since there is a dependent source that will prevent the circuit reducing to just resistors. Writing
the relation between i and u at the terminals of the capacitor seems the best way to find RT . This has
basically already been done in the above solution, when we used KVL to give Hix + u − Rix = 0. If
we define a current i at the terminals (in the opposite direction to ix, so that u and i follow the ‘active
convention’ for the Thevenin equivalent) this equation can be written u = 0 − (R − H)i, which is the
equation of a Thevenin source with UT = 0 and RT = R−H.

The initial value of u has already been found at the start. The final value can be found as 0, by considering
that there is no indepdenent source, but that there is a path by which the capacitor can discharge.

If one tries to use directly the initial and final values for ix without using u as an intermediate solution, it
is wise to notice that ix is not the continuous quantity. One should not just assume that ix(0

+) = ix(0
−).

However, by good luck (!) that equality actually happens to be true in this circuit . . . that’s why I wrote
‘wise’ rather than ‘important’: be careful next time, because another circuit might have a jump of a
discontinous quantity!
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