
KTH EI1120 Elkretsanalys (CENMI) KS 1 2018-02-01 kl 08–10

Hjälpmedel: Ett A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet
eller datorutskrift; text eller diagram; stor eller liten textstorlek, . . . .

Om inte annan information anges i ett tal ska: komponenter antas vara ideala; angivna värden av kom-
ponenter (t.ex. R för ett motst̊and, U för en spänningskälla, K för en beroende källa) antas vara kända

storheter; och andra markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla)
antas vara okända storheter. Lösningar ska uttryckas i kända storheter och förenklas. Var tydlig med
diagram och definitioner av variabler.

KS1 ger inte direkt betyg, utan poäng som kan ersätta poängen i sektion-A i tentan (TEN1, mars) om
KS:en gav mer. Se därför reglerna för TEN1 ang̊aende gränser.

Nathaniel Taylor (073 949 8572)

1) [4p]

Bestäm följande storheter:

a) [1p] potentialen vx

b) [1p] effekten absorberad av R2

c) [1p] strömmen io

d) [1p] effekten levererad fr̊an källan I2
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2) [4p+0,5p]

a) [4p] Använd nodanalys för att skriva
ekvationer som skulle kunna lösas för att f̊a
ut de markerade nodpotentialerna v1, v2,
v3 och v4. Du m̊aste inte lösa eller förenkla
ekvationerna: du behöver bara visa att du
kan översätta fr̊an kretsen till ekvationerna.

b) [0,5p] Härled v4. Förslag: supernodmetoden.
Obs att det är sv̊art, för väldigt lite ’extra
poäng’. Försök bara om du är klar med allting
annan och vill utmanas.
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3) [4p]

Kretsen till höger modellerar en uppställning
fr̊an laboration 1. Motst̊andet Rm represente-
rar en ickeidéal spänningsmätare, vilken kopplas
för att mäta spänningen över ett motst̊and i en
spänningsdelare.
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a) [2p] Bestäm Theveninekvivalenten av kretsen förutom Rm, sett mellan polerna a-b.

b) [1p] Bestäm u när mätaren är kopplad mellan polerna. (Detta värde är spänningen som mätas.)

c) [1p] Om R1 = R2 = Rm, bestäm kvoten u/U .
(Alla motst̊and kan elimineras fr̊an lösningen.)

Short translations of the questions to English:

1. Find:
a) potential vx
b) the power absorbed by R2

c) current io
d) the power delivered from source I2

2.
a) Write equations that could be solved to find node potentials v1, v2, v3 and v4. You are not required to solve

them in this part.
b) For a small ‘extra point’ find potential v4; this is difficult and is not worth doing unless you have finished
everything else and want a challenge. Hint: nodal analysis is probably a good idea, using the supernode method.

3. The diagram models a circuit used in Lab-1. Resistor Rm represents a nonideal voltmeter, which is connected
so as to measure the voltage across a resistor in a voltage divider.
a) Determine the Thevenin equivalent of the circuit without Rm (i.e. without the meter connected) seen at the
terminals a-b.
b) What voltage u will be measured when the meter (Rm) is connected between these terminals.
c) If R1 = R2 = Rm, what is the ratio u/U? (All the resistances can be eliminated from this solution.)

Slut. Men slösa inte eventuell återst̊aende tid: kolla och dubbelkolla svaren.
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Solutions (EI1120 KS 1 VT18, 2018-02-01)

Q1.

a) vx = U1 + I1R1

No current flows in the opamp input, so KCL at vx requires a current of I1 downwards through R1.
The other side of R1 is at zero potential, so by KVL the voltages across R1 and U1 add to give vx.
(We are careful to check the direction of the current through R1, i.e. to check that the term for voltage
across R1 is +I1R1 rather than −I1R1.)

b) P
R2

=
(U1 + I1R1)

2

R2
R2 is connected from the opamp’s inverting input to zero, so the voltage across it is the same as the
potential at the inverting input: we’ll call that v

−
. The power dissipated in it is therefore v2

−
/R2.

The opamp is ideal and with negative feedback, so we assume that its inputs have equal potential; the
feedback holds the inverting input to follow the non-inverting input. As there is no current in the input,
there is no current in R0, and therefore by Ohm’s law no voltage across it. Consequently the potential
of the non-inverting input is v+ = vx. Putting these points together, v

−
= v+ = vx, so the sought power

is v2x/R2. Then use the value of vx from part ‘a)’.

c) io =
U1 + I1R1

R2
− I2

In order to use KCL at the opamp’s output we need to find the current through U2. We could do this
by calculating the potential at the opamp’s output (using KCL at the inverting input), and then finding
the current through R3 by KVL (‘potentialvandring’) between the opamp output and inverting input.
But in this circuit we can solve more directly by noticing that the current to the left in R2 is vx/R2,
and that by KCL this must also be the current that is going up from the opamp output into U2.
Thus, with KCL at the opamp output, io = −I2 + vx/R2; then substitute for vx.

d) P
I2
= (U1 + I1R1)

(

1 + R3

R2

)

I2 − U2I2

This time we can’t usefully avoid finding the potential at the opamp’s output: let’s call it vo.
KCL at the inverting input is vx

R2
+ vx−U2−vo

R3
= 0.

So vo = vx

(

1 + R3

R2

)

− U2.

As the current source I2 connects between this potential and zero, vo is the voltage across the current
source. For the marked direction of the current, the power delivered by this current source is the product
voI2.

Q2.

Two examples will be shown. Many variations are possible. The first example is the one that we suggest
is probably easiest to do for this type of question, based on systematic use of simple rules. The second
is more easily used to obtain the solution requested in part ‘b)’.

a) Write equations that could be solved for all the node potentials.

Extended nodal analysis (“the simple way”)

We’ll define the unknown currents in the two voltage-sources to be going into the source’s + terminal.
We’ll call them iα in the independent source U1, ix in the independent source U2 (ix is already defined
so we can use this instead of defining a new same for the same current), and iβ in the dependent source
Kyuy.
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First we write KCL at all nodes except ground:

KCL(1)(out) : 0 = −iα +
v1 − v4
R1

− ix (1)

KCL(2)(out) : 0 = ix +Kxix +
v2 − v3
R2

(2)

KCL(3)(out) : 0 = −iβ +
v3
R3

+
v3 − v2
R2

(3)

KCL(4)(out) : 0 = −I +
v4 − v1
R1

+ iβ −Kxix (4)

These are only 4 equations so far, but with 7 unknowns: v1, v2, v3, v4, iα, iβ , ix.

We can add the further information given by the voltage sources, which provides equations to balance
the extra unknowns of the voltage sources’ currents,

0− v1 = U1 (5)

v2 − v1 = U2 (6)

v4 − v3 = Kyuy (7)

One of those equations introduced a further unknown, uy, which reminds us that we need to define the
marked (but unknown) quantities controlling any dependent sources in the circuit:

uy = v3 (8)

Notice that if we had followed the completely “non-thinking” way of defining a current in source U2 (e.g.
iγ) then we would also have needed to write an equation that defines what ix is; that would most simply
have been done as ix = iγ . Instead we chose to use the already-marked ix in our KCL equations, so this
quantity is now already defined in the KCL at nodes 1 and 2, and we don’t need a further equation to
define it (if we tried, it would just be repeating information that already exists in the above equations).

Now there are 8 equations and 8 unknowns.

End. That’s it. The above 8 equations are a valid solution to Q2a.

Nodal analysis by simplifications including supernodes

Now we’ll try a more solution-friendly approach, even though we aren’t required to solve it.

We have a group of three nodes joined by voltage sources: ground, v1, v2. For this ‘ground supernode’
we can write marked the potentials directly:

v1 = −U1 (1)

v2 = U2 − U1 (2)

Then we have two more nodes joined by a voltage source (dependent source Kyuy), that form another
supernode: v3, v4. For this supernode, we let one of the unknown potentials remain: let’s choose v3.
Then the potentials of other nodes in that supernode are expressed in terms of that one unknown: in
our case, v4 = v3 +Kyuy. We want to avoid bringing further unknowns into our equations, so we prefer
to express uy in terms of known quantities or unknowns that are already used in our equations. In this
case we see from the diagram that uy = v3, so we can write:

v4 = v3 (1 +Ky) . (3)

The preceding three equations define all node potentials except v3, in terms of known values (compo-
nents) and the one unknown potential v3. That suggests we only need to find one further equation to
solve, to find v3. Remembering the rule “KCL at every supernode and separate node except ground”,
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the only KCL we should write in this circuit is at the non-ground supernode, i.e. nodes 3 and 4. KCL is
not needed at the ground supernode as the potentials are already fixed.

KCL(3,4)(out) : 0 =
v3
R3

− I +
v3 (1 +Ky)

R1
−Kxix +

v3 + U1 − U2

R2

But this equation contains the further unknown ix. Because this is the current in a voltage source, it
cannot just be written based on this branch alone, as it could if in a current source or a resistor (in
terms of node potentials and resistance). We have to use KCL to determine this current in terms of
other branches that the voltage source connects to. Node 1 has a further voltage source (with unknown
current), so we’d have to look even further to v4 and v3 to find ix by that approach. Let’s look at node
2 instead: KCL(2) is v2−v3

R2
+ ix +Kxix = 0, so

ix =
v3 − v2

(1 +Kx)R2
=

v3 + U1 − U2

(1 +Kx)R2
.

Substitute this into the KCL(3,4) equation,

KCL(3,4)(out) : 0 =
v3
R3

− I +
v3 (1 +Ky)

R1
−

Kx (v3 + U1 − U2)

(1 +Kx)R2
+

v3 + U1 − U2

R2
(4)

and simplify,

0 =
v3
R3

− I +
v3 (1 +Ky)

R1
+

v3 + U1 − U2

(1 +Kx)R2

End. This set of four equations is a sufficient answer for solving “all the node potentials”.

b) Now we are asked to solve (find an expression for) v4. From the solution in part ‘a)’ using supernodes,
equation (4) can be solved for v3, and equation (3) lets us find v4 once v3 is known.

First we’ll rearrange (4) to give v3,
(

1 +Ky

R1
+

1

(1 +Kx)R2
+

1

R3

)

v3 = I +
U2 − U1

(1 +Kx)R2

v3 =
I + U2−U1

(1+Kx)R2

1+Ky

R1
+ 1

(1+Kx)R2
+ 1

R3

=
(1 +Kx)R2I + U2 − U1

1 +
(1+Ky)(1+Kx)R2

R1
+ (1+Kx)R2

R3

(It’s not clear which term above is the nicer way of expressing v3.)

Substituting with (3),

v4 = (1 +Ky) v3 =
(1 +Ky)

(

I + U2−U1

(1+Kx)R2

)

1+Ky

R1
+ 1

(1+Kx)R2
+ 1

R3

(5)

Q3.

a) The Thevenin equivalent of R1, R2 and U , between
the terminals a-b, is shown on the right.

+
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b) When the voltmeter with resistance Rm is connected
between the terminals of the Thevenin equivalent from
part ‘a)’, a voltage divider is formed:

u = U
R2

R1 +R2

Rm

Rm + R1R2

R1+R2

=
UR2Rm

R1R2 +R1Rm +R2Rm
.

+
− U R2

R1+R2

R1R2

R1+R2

a

+

−

u

b

Rm

c) Given that R1 = R2 = Rm, let us replace all the resistances in the solution of part ‘b)’ with ‘R’, and
simplify:

u =
URR

RR+RR+RR
=

U

3
.

As should be familiar from the Lab-1 task, this is the voltage that was seen when the meter and the two
resistors in divider to which the meter was coupled were all 10MΩ.
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