
KTH EI1120 Elkretsanalys (CENMI) TEN1 2021-03-17 kl. 08–13

Permitted material: Beyond writing-equipment, up to three pieces of paper up to A4 size can be used,
with free choice of content: handwritten, printed; small, large; text, diagram, image; one or both sides,
etc. These papers do not need to be handed in with the exam.

Unless it is stated otherwise, the final answer to a question should be expressed in terms of the known
quantities given in the question, and any clear simplifications should be done. Component values such
as R for a resistor, U for an independent voltage source, or K for a dependent source, are assumed to
be known quantities. Marked currents or voltages such as ix are assumed to be definitions, not known
quantities.

Clearly drawn and labelled diagrams are a good way to help yourself avoid mistakes, and to make clear
to others what you are doing. By showing clearly your intermediate steps in a solution, you improve
your chance of getting points even if the final result is wrong. You may write in Swedish or English;
but we suggest that writing in either is seldom necessary if you make good use of diagrams and equations!

Determination of exam grade. Denote as A, B and C the available points from sections A, B and C
of this exam: A=12, B=10, C=18. Denote as a, b and c the points actually obtained in the respective
sections, and as ak and bk the points from KS1 and KS2, and as h the homework ‘bonus’. The requirement
for passing the exam (E or higher) is:

max(a, ak)

A
≥ 40% &

max(b, bk)

B
≥ 40% &

c

C
≥ 40% &

max(a, ak) + max(b, bk) + c+ h

A+B + C
≥ 50%

The grade is then determined by the total including bonus, i.e. the last of the terms above: boundaries
(%) are 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). If the exam misses a pass by a small margin on just
one criterion, a grade of Fx may be registered, with the possibility of completing to E by an extra task
arranged later.

Special for the VT21 round:

The exam is conducted remotely, monitored in a video meeting.
Answers must be in handwriting: either on paper that is scanned or photographed, or by handwriting
into a computer by means of a suitable touchscreen or pad.
In selecting whether to use points from the exam or part-exams (‘KS’), the selection will be done per
question, not just per section.
The course’s optional project-task substitutes for Question 9 in this exam if that gives an advantage.

Nathaniel Taylor (08 790 6222)
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Section A. Direct Current

1) [4p]

Determine:

a) [1p] the power into R2

b) [1p] the marked voltage ua

c) [1p] the marked current ib

d) [1p] the power from source I2

I1

− +

U1

R1

+ −
ua

I2

ib
R3

R4

R2
− +

U2

2) [4p]

Write equations that could be solved
without further information to find the
potentials v1, v2, v3 and v4 in this circuit
in terms of the component values.

Guy

R2

R1

R4

+

−

ux

R3

−+
U

−

+

uy

I

−
+

K ux

v1

v2 v3

v4

3) [4p]

Determine the Thevenin equivalent between:

a) [3p] Terminals a and b.

b) [1p] Terminals c and d.

Note! low points for the work.

−
+ U

R

R

−
+ U

R

R

ab

Gux R

+

−

ux

− +

K ux

d

c
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Section B. Transient Calculations

4) [5p] Determine the:

a) [1p] energy stored in L1 at t = 0−

b) [1p] power into R3 at t = 0+

c) [2p] power out of C1 at t = 0+

d) [1p] energy stored in C1 as t → ∞

R1

C1

R2

L1

−
+ U · 1(t)

L2 R3

C2I

5) [5p]

a) [3p] Determine i(t) for t > 0, for the upper
circuit.

b) [2p] Determine i(t) for t > 0, for the lower
circuit, i.e. the circuit with a dependent source.

Note! If you get this solution right, it will
provide the points for part ‘a’ as well, so you get
all 5 points for solving just the lower circuit. But
solving the upper circuit too might be good for
safety, in case of mistakes with the more difficult
solution.

−
+ U

R1

t = 0

C R2

i(t)

−
+ U

R1

t = 0

C

+

−

uc

R2

−
+K uc

i(t)
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Section C. Alternating Current

6) [4p]

Determine i(t).

−
+u1(t) = Û1 cosωt

L

−
+ u2(t) = Û2 sinωt

C

i(t)

7) [4p]

a) [2p] Show that this circuit’s network
function H(ω) = uo

ui
can be expressed as

H(ω) =
− (1 + jω/ω1)

jω/ω0 (1 + jω/ω2)
.

−

+

+

−

ui

R1 L

R2
C

+

−
uo

b) [2p] Sketch a Bode amplitude plot of the above network function,
given that 100ω0 = ω1 and ω1 ≪ ω2. Mark significant points and gradients.

8) [4p]

The source has angular frequency ω.
All the component values are fixed.

N1 : N2

−
+ U

R1 R2

L

A resistor Rx and capacitor Cx are connected in parallel to the terminals at the right of the circuit.

a) [3p] What values of Rx and Cx should be chosen in order to maximize the power going into Rx?
Express them in terms of the component values in the shown circuit.

b) [1p] With Rx and Cx chosen as requested in ‘a’, express the power transferred into Rx.
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9) [6p]

The diagram below shows a balanced three-phase system. A three-phase voltage source supplies the
primary side of a transformer that is formed from three single-phase transformers, all with N1 : N2

ratio. A resistive load is connected to the secondary side.

N1 N2

i1a

− +

ua = U√
3
0

i
1b

− +

u
b
= U√

3
−2π
3

i1c

− +

uc =
U√
3

−4π
3

+

−
u1a

+

−
u

1b

+

−
u1c

+

−
u2a

+

−
u

2b

+

−
u2c

i2a

i
2b

i2c

iRα

R

+ −
uRα

i
Rβ

R

+ −
u

Rβ

iRγ

R

+ −
uRγ

Note that straight lines crossing each other in this diagram do not indicate a connection. Connections
here involve three lines stopping at a single point.

a) [2p] What is the voltage magnitude across each load resistor? For example, |u
Rβ
|.

b) [1p] What complex power does the source supply?

c) [2p] What is u2c as a phasor: magnitude and angle?

d) [1p] What is the angle of uRγ?

The End. Please don’t waste remaining time . . . check your solutions!
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Översättningar:

Hjälpmedel: Upp till tre A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet eller
datorutskrift; text, diagram, bild; stor eller liten textstorlek, o.s.v. Dessa måste inte lämnas in med skrivningarna.

Om inte annan information anges i ett tal ska: komponenter antas vara ideala; angivna värden av komponenter
(t.ex. R för ett motst̊and, U för en spänningskälla, K för en beroende källa) antas vara kända storheter; och andra
markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla) antas vara okända storheter.
Lösningar ska uttryckas i kända storheter och förenklas.

Var tydlig med diagram och definitioner av variabler. Du f̊ar skriva p̊a svenska eller engelska, men vi rekommenderar
att diagram och ekvationer används i stället i de flesta fall.

1. [4p] Bestäm följande:
a) [1p] effekten in till R2

b) [1p] den markerade spänningen ua

c) [1p] den markerade strömmen ib
d) [1p] effekten fr̊an källan I2

2. [4p] Skriv ekvationer som skulle kunna lösas, utan vidare information, för att bestämma potentialerna v1, v2,
v3 och v4, som funktioner av kretsens komponentvärden. Det rekommenderas inte att du försöker lösa ekvationerna!

3. [4p] Bestäm Theveninekvivalenten mellan:
a) [3p] polerna a och b,
b) [1p] polerna c och d.

4. [5p] Bestäm:
a) [1p] energin lagrad i L1 vid t = 0−

b) [1p] effekten in till R3 vid t = 0+

c) [2p] effekten fr̊an C1 vid t = 0+

d) [1p] energin lagrad i C1 vid t → ∞.

5. [5p] Bestäm, för t > 0:
a) [3p] i(t) i den övre kretsen (utan beroende spänningskälla),
b) [2p] i(t) i den lägre kretsen (med beroende spänningskälla).
Obs! Hela 5 poäng för tal 5 erh̊alls vid korrekt lösning av deltal ’b’. Men lösning av deltal ’a’ kan vara en bra
säkerhet d̊a lösning av ’b’ kanske misslyckas.

6. [4p] Bestäm i(t) (genom växelströmsanalys).

7. [4p]
a) [2p] Visa att kretsen har den angivna nätverksfunktion (se ekvationen till vänster om diagrammet).
b) [2p] Skissa ett Bodeamplituddiagram av H(ω) som given i deltal ’a’. Antag 100ω0 = ω1 och ω1 ≪ ω2. Markera
viktiga punkter och lutningar.

8. [4p] Källan har vinkelfrekvens ω. Komponentvärden i kretsen är fasta.
a) [3p] Most̊and Rx och kapacitans Cx parallelkopplas till polerna som visas till höger. Vilka värden ska dessa
ha, uttryckta i diagrammets komponentvärden, för att maximaleffekt överförs till Rx?
b) [1p] Hur mycket aktiveffekt kommer till Rx när Rx och Cx väljs enligt ’a’?

9. [6p]
a) [2p] Vad är det för spänningsmagnitud p̊a varje lastmotst̊and, t.ex. |uRβ |?
b) [1p] Vilken komplexeffekt matas fr̊an källan?
c) [2p] Vad är u

2c
som fasvektor (magnitud och fas)?

d) [1p] Hur mycket är vinkeln av uRγ?
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Solutions (EI1120 TEN1 VT21, 2021-03-17)

Q1

a. PR2
=

U2
2

R2

KVL around the top loop.

b. ua = − (I1 + I2)R1

KCL at the left of U1 shows that a current of I1 + I2 passes
from right to left in R1. The direction of ua is such that this
current comes out from the + side of the voltage, so a negative
sign is needed in Ohm’s law.

c. ib =
−I2R4

R3 +R4

Current division between R3 and R4, noting the backward
direction. KCL at the node above I2 shows that exactly this
source’s current passes down through the two parallel resistors.

I1

− +

U1

R1

+ −
ua

I2

−

+

ux

ib
R3

R4

R2

− +

U2

d. PI2
= I2

(

U1 + (I1 + I2)R1 +
I2R3R4

R3 +R4

)

The power out from this source is the product of its current I2 and its voltage, marked ux on the diagram
to the right. To find ux we apply KVL. The smallest useful loop is through R3 or R4, then R1 and U1,
giving the KVL equation ux = U1 − ua − ibR3.
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Q2

I. Extended nodal analysis

Write KCL at every node except the reference (earth) node.
Define the unknown currents in voltage sources: here we have defined them as iα and iβ .

KCL(1)(out) : 0 =
v1
R1

+
v1 − v2
R2

+Guy (1)

KCL(2)(out) : 0 =
v2 − v1
R2

+
v2 − v3
R3

+ iα (2)

KCL(3)(out) : 0 =
v3 − v2
R3

+
v3
R4

− I (3)

KCL(4)(out) : 0 = I −Guy − iα + iβ (4)

Then write the contraints that the voltage sources put
on the node potentials.

v2 − v4 = U (5)

v4 = Kux (6)

Finally, express the definitions of the marked
quantities that control dependent sources.

ux = v3 (7)

uy = v3 − v4 (8)

Guy

R2

R1

R4

+

−

ux

R3

−+

iα

U

−

+

uy

I

−
+

iβ

K ux

v1

v2 v3

v4

The above are 8 equations in 8 unknowns: v1, v2, v3, v4, iα, iβ , ux, uy. Having followed the rules, we
expect them to be independent equations.

II. Nodal analysis by simplifications including supernodes

The nodes with potentials v4 and v2 are connected to each other and to the reference node through
voltage sources. Their potentials can therefore be defined in terms of the source voltages: v4 = Kv3, and
v2 = v4+U = U +Kv3. They can be said to form a single supernode: we do no KCL on it, as it includes
the reference node.

We write these two nodes’ potentials in terms of the known quantities (component values) and the other
potentials (the ones that we’ll include in KCL).

v4 = Kv3 (1)

v2 = U +Kv3 (2)

The remaining two nodes have potentials that we must find by KCL. We define v1 and v3 as unknowns,
and write KCL for these nodes in terms of just these two unknowns. KCL at node 1 would include
a current Guy, which includes the further unknown uy, so we first try to express this in terms of v1,
v3 and component values. The definition of uy is across the current source I, from which we see that
uy = v3 − v4. Substituting the above expression for v4 gives uy = v3(1−K).

v1 − (U +Kv3)

R2
+

v1
R1

+ (1−K)Gv3 = 0 (3)

v3 − (U +Kv3)

R3
− v3

R4
− I = 0 (4)

These two KCLs can be solved together to find v1 and v3, after which the earlier two equations can be
used to find v4 and v2.
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Q3

a. UT = U and RT = R.

Several methods all seem quite sensible for this solution.

Some of them can be simplified by seeing the circuit as
two identical ‘units’ in series. If the equivalent for one
unit is found, the equivalent for both in series will have
twice as much voltage and resistance.

• Nodal analysis to find the u, i relation. For example,
define node ‘b’ as zero, in which just node ‘a’ and the
middle node are independent potentials.

−
+ U

R

R

−
+ U

R

R

ab

However, it’s easier to take just one of the two identical parts in the circuit. If we define the middle point
at 0 and define a current i out of terminal ‘a’, KCL gives i+ va

R + va−U
R , from which va = U/2 + i R/2.

We get the solution by identifying UT and RT from this u, i relation, and doubling them for the case of
two similar series-connected units.

• Find the open-circuit voltage by looking at the two loops, which are independent (no current going
between them) when the shown terminals are open-circuit. This voltage is the sum of voltages across the
2 identical voltage-dividers, which both divide by 2. There are no dependent sources to cause trouble
here, so we can find the Thevenin resistance by setting the sources to zero, which gives a series connection
of two parallel pairs of resistors.

• Source transformation, turning each of the two identical units in the circuit into two parallel resistors
R and a parallel current source U/R. Then consider short-circuit current and equivalent resistance.

• Superposition. This might help the circuit to look more friendly. Due to the symmetry, the calculation
would be identical for each of the two superposition states.

b. UT = 0 and RT =
1 +K

G+ 1
R

.

Mark the voltage and current at the terminals: u and
i in the diagram shown here. Here the active convention
has been chosen, with current defined in the direction out
of the +-side of the voltage, even though the circuit has
no independent source. This fits with what we’ve usually
done for a ‘Thevenin source’.

i

Gux R

+

−

ux

− +

K ux

c
+

−

u

d

Here, writing a relation between u and i looks a good idea. The presence of dependent sources prevents
the method of just simplifying resistors after setting all independent sources to zero.

Taking KCL at the top node, i+Gux + ux/R = 0.

This gives a relation of i to ux, without u.

A KVL in the outer loop expresses ux in terms of u as u = (1 +K)ux.

From the above,

i =
−
(

G+ 1
R

)

1 +K
u,

so

u = 0− 1 +K

G+ 1
R

i.

Comparing this to the u, i relation of a Thevenin source, u = UT−RT i, we find the Thevenin component
values.
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Q4

The original circuit is shown on the right.

Just one change happens over all time, with
the voltage source stepping from 0 to U at time
t = 0.

We have to solve for quantities in the initial
(0−) and final (∞) equilibrium states, and just
after the step (0+).

For each state we’ll draw a simplified diagram.

R1

C1

R2

L1

−
+ U · 1(t)

L2 R3

C2I

Initial equilibrium, t = 0−.

The voltage source still has zero value, so it can
be shown as a short-circuit. With no change in
current or voltage, inductors have no voltage
and capacitors have no current, so they can be
simplified as short- or open circuits.

Inductor currents and capacitor voltages are
marked here, with directions chosen to give
positive expressions. Only iL1 matters to us
just now, for finding the energy stored in L1.
However, others of these continuous variables
might be useful for calculations at t = 0+.

R1

+ −uC1(0
−)

R2

iL1(0
−)

iL2(0
−) R3

−

+

uC2(0
−)I

By current division, iL1 = IR2
R1+R2

.

a. WL1(0
−) =

1

2
L1

(

IR2

R1 +R2

)2

.

Continuity just after the step, t = 0+.

Here, the capacitor voltages and inductor
currents have not had a chance to change in
spite of the voltage-source’s change. We can
represent them as sources with the values from
t = 0− that were defined (but not solved)
above.

KCL at the left of R3 shows that the current
through R3 is iL2(0

−)− I.

Looking back to the earlier, diagram for t = 0−,
KCL in the same place shows that iL2(0

−) = I.

R1

ix −+

uC1(0
−)

R2

iL1(0
−)

−
+ U

iL2(0
−)

R3

−
+uC2(0

−)I

b. PR3(0
+) = (iL2(0

−)− I)
2
R3 = (I − I)2R3 = 0.

The power out of C1 is uC1 ix, where ix is the current shown above, defined out of the + terminal of the
voltage source that represents C1 at t = 0+.

The current in R1 is fixed by KVL and Ohm’s law, around C1 and R1.

The current down through source U is fixed by the inductor’s current iL1(0
−).
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KCL gives ix in terms of the above two currents,

ix =
−uC1(0

−)

R1
− iL1(0

−).

Then use the diagram for t = 0− to calculating the values of the continuous quantities such as uC1(0
−),

ix =
− IR1R2

R1+R2

R1
− IR2

R1 +R2
= −2

IR2

R1 +R2
.

Multiply this current by the capacitor’s voltage to give the power out,

c. PC1(0
+) = ix(0

+)uC1(0
−) = −2

IR2

R1 +R2
· IR1R2

R1 +R2
=

−2R1R
2
2I

2

(R1 +R2)
2 .

Final equilibrium, t → ∞.

In order to find the energy stored in C1 at this
time, we should find this capacitor’s voltage,
uC1(∞).

It is harder than at t = 0−, because the source
U prevents R1 and R2 being in parallel.

Superposition is a convenient method:

With source U alone, the only current-loop is
around U , R2, R1.
Voltage division gives u

C1,(U)
(∞) = −R1U

R1+R2
.

R1

+ −uC1(∞)

R2

iL1(∞)

−
+ U

iL2(∞) R3

−

+

uC2(∞)I

With source I alone, the zeroed voltage source causes R1 and R2 to be in parallel.
Current division gives u

C1,(I)
(∞) = R1R2I

R1+R2
.

Adding both of the above partial results, uC1(∞) = R1R2I−R1U
R1+R2

.

d. WC1(∞) =
1

2
C1

(

R1R2I −R1U

R1 +R2

)2

.

A note: The only change in this circuit was the step in the voltage source. This source is in series with
an inductor, which initially causes the current through their branch to remain the same as before the
step. Therefore, we can expect all other quantities in the circuit (outside this branch) are identical at
t = 0− and t = 0+. If one wants a name for the principle, one option is ‘substitution theorem’: in a given
circuit, changing a component for any other one that will give the same voltage or current will give the
same results in the circuit.
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Q5

Consider first the initial condition. The
capacitor’s continuous quantity is voltage. We
find the voltage on the capacitor in the
equilibrium at t = 0−, before the switch closes.

The capacitor is then seen as an open-circuit
(equilibrium), so current flows only in the outer
loop.

By KVL in the loop on the right, the
capacitor’s voltage is the same as the voltage
across R2. Voltage division gives the voltage
across R2 as UR2

R1+R2
.

−
+ U

R1

t = 0

C

+

−

uc R2

i(t)

By continuity, the capacitor’s voltage remains the same immediately after the circuit changes, so
uc(0

+) = uc(0
−) = UR2

R1+R2
.

After the switch opens, the left branch is disconnected. The capacitor is connected only to R2, so it
discharges through R2.

The final equilibrium state of the capacitor’s voltage is therefore uc(∞) = 0.

By continuity, the capacitor’s voltage remains the same immediately after the circuit changes, so
uc(0

+) = uc(0
−) = UR2

R1+R2
.

The time-constant is simply CR2.

Putting the above together to fit the expected exponential decay,

uc(t) = uc(∞) +
(

uc(0
+)− uc(∞)

)

e−t/τ =
UR2

R1 +R2
e−t/CR2 .

Up to here we’ve focused on finding the continuous quantity uc(t). From this we can find other quantities
in the circuit. In this case, we want to find the marked i(t). Two methods of doing this are given below.

After the switch opens, the marked current i is the same as the current coming out from the top end of
the capacitor. This follows from KCL at the top node, with the left branch open-circuit. Therefore,

i(t) = −C
duc(t)

dt
= −C

−1

CR2

UR2

R1 +R2
e−t/CR2 =

U

R1 +R2
e−t/CR2 .

An alternative, rather easier method uses KVL and Ohm’s law,

i(t) =
uc(t)

R2
=

U

R1 +R2
e−t/CR2 .

b. Who would have thought that adding one little
dependent source would make it so different?

It’s not very surprising, really, as dependent sources
are nasty, and even adding one resistor can
sometimes make a circuit much more work to solve.

−
+ U

R1

t = 0

C

+

−

uc

R2

−
+K uc

i(t)
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In the initial equilibrium at t = 0−, with the switch closed and no current in the capacitor, we can take
KCL at the top node,

uc − U

R1
+

uc +Kuc − 0

R2
= 0.

This gives

uc

(

1

R1
+

1

(1 +K)R2

)

=
U

R1

so

uc(0
−) =

U/R1
1
R1

+ 1
(1+K)R2

=
U (1 +K)R2

R1 + (1 +K)R2
.

The final equilibrium is still zero, as no source is connected after t = 0 and any voltage on the capacitor
will cause a current around R2 to discharge it. (Or, at least, it will as long as K isn’t < −1 . . . we’ll
assume it’s a stable circuit.)

The time-constant can be found by considering the Thevenin resistance of what’s connected to the
capacitor during t > 0.

i(t)

R2

−
+K uc(t)

+

−

uc(t) =⇒

i(t)

−
+ UT

RT+

−

uc(t)

By KVL in the right loop, the relation of the capacitor’s voltage uc(t) to the current i(t) out of its +
end is,

uc(t) +Kuc(t) = i(t)R2,

uc(t) = 0 +
R2

1 +K
i(t) = UT +RT i(t).

The + sign is in contrast to the UT − RT i(t) that we often have seen: it’s because this time we just
happen to have a current that’s defined into the + side of the terminal voltage uc.

From the above, RT =
R2

1 +K
.

Putting together the initial value, final value and time-constant, as for part ‘a’,

u(t) =
UR2/(1 +K)

R1 +R2/(1 +K)
e
−t 1

CR2/(1+K) =
U

1 + (1 +K) R1
R2

e
−t 1+K

CR2 .

In this circuit with the dependent source, the method of i = −C duC
dt still works for finding the marked

current i. The method of KVL and Ohm’s law would require a factor (1 + K) to scale the capacitor
voltage to be the voltage across the resistor.

i(t) =
U

(

1 + (1 +K) R1
R2

)

R2
1+K

e
−t 1+K

CR2 =
U (1 +K)

(1 +K)R1 +R2
e
−t 1+K

CR2 (t > 0).

This could be expressed in many ways, without one clearly being the best ‘simplification’.

Note that in this particular circuit, where the dependent voltage source is in series with the resistor
and is controlled by the voltage across the pair of them, a bit of ‘conceptual’ thinking could have told
us from the start that this pair of K uc and R2 would behave, from the position of the capacitor, as a
resistor of R2/(1 +K). Then we could just have substituted R/(1 +K) for R2 in the earlier solution.
The reason is that the dependent source causes R2 always to see (1 +K) of the voltage that’s applied.
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Q6

We are given the time-functions

u1(t) = Û1 cosωt,

u2(t) = Û2 sinωt. −
+ u1

L

−
+u2

C

i(t)

Let’s take cosine as the reference phase, and use peak-values. Then we can define

u1(ω) = Û1 0 = Û1

u2(ω) = Û2 −π/2 = −jÛ2.

The currents around the left and the right loop can be analyzed separately: they only meet at a single
node, so we can take two independent KVLs.

The current up through the left source is i1(ω) =
u1(ω)

jωL
.

The current up through the right source is i2(ω) =
u2(ω)

1/ (jωC)
.

The marked current is the sum of the above,

i(ω) = i1(ω) + i2(ω) =
Û1

jωL
+
(

−jÛ2

)

(jωC) = ωCÛ2 − jÛ1
1

ωL
.

For the time-function we need the polar form:

|i(ω)| =

√

√

√

√

(

ωCÛ2

)2
+

(

Û1

ωL

)2

and i(ω) = atan
−Û1

ω2LCÛ2

.

As we chose cosine reference and peak values for transforming from time functions to phasors, we use
the same for transforming back:

i(t) =

√

√

√

√

(

ωCÛ2

)2
+

(

Û1

ωL

)2

cos

(

ωt− atan
Û1

ω2LCÛ2

)

.
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Q7

a. This is a classic inverting amplifier, but with the input and feedback impedances are made up of
more than a single component each.

−

+

+

−

ui

R1 L

R2
C

+

−
uo

−

+

+

−

ui

Z1

Z2

+

−
uo

H(ω) can be found from KCL at the inverting input, where the potential must be 0 in order to match
the non-inverting input: 0−ui

Z1
+ 0−uo

Z2
+ 0 = 0.

Alternatively, one can make direct use of the standard result for an inverting amplifier, uo/ui = −Z2/Z1.

H(ω) =
uo
ui

=
−Z2

Z1
=

−
(

R2 +
1

jωC

)

R1 + jωL

The classic form with (1 + jω/ωx) terms can be obtained here by multiplying top and bottom by jωC,
then bringing a factor R1 out from the parentheses at the bottom.

H(ω) =
− (jωCR2 + 1)

jωC (R1 + jωL)
=

− (1 + jωCR2)

jωCR1 (1 + jωL/R1)
=

− (1 + jω/ω1)

jω/ω0 (1 + jω/ω2)
.

The final step in the above shows that ω0 =
1

CR1
, ω1 =

1
CR2

, ω2 =
R1
L .

b. In the example on the right, only the solid blue line is required as the solution.

The vertical axis should be in dB, and should have
0 dB marked.

The frequency scale should be logarithmic, to give
straight lines in the Bode amplitude plot. All three
frequency-points such as ω1 should be marked. It
doesn’t matter whether the notation uses ω or f or
logω, etc.

The lowest frequency, with subscript 0, is where the
plot passes through 0 dB.

The intermediate frequency, with subscript 1, is 100
times as high as the lower one, so the plot at this
point has a level −40 dB, which should be marked.

The highest frequency is where the second denominator term ‘turns on’, so now the line starts fal-
ling again. If the gradient looks clearly the same as the earlier gradient it’s not necessary to specify
−20 dB/decade at both the high and low frequency ends of the plot.

At some point the gradient of −20 dB/decade should be marked.

The three dashed lines show the three terms in the function H(ω).
It is their sum that makes the main plot.

The negative sign in H(ω) is irrelevant to our case, as this is an amplitude plot. In a phase plot, it would
have caused a 180° phase shift.
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Q8

In case the description about Rx and Cx did not seem clear, please note that there would not have been a reason to include
the word “parallel” if meaning that Rx and Cx should be in series with each other: in that case, they would together
have just two available terminals, and the shown circuit has just two available terminals, so there is only one non-trivial
connection of these two chunks.

a. Just Rx and Cx can be varied.

The rest of the circuit has fixed
component-values.

Active power to Rx is to be maximized.

N1 : N2

−
+ U

R1 R2

L Cx Rx

This is a very classic ac maximum power case. With Rx and Cx forming the load, we can freely control
both the active and reactive parts of the load, and the reactive part of the load is the opposite type to
the source. It is therefore possible to fulfil the maximum power condition Zload,maxP = Z∗

source.

I. A thinky, not very algebraic way.

This is a convenient case, as the reactive parts of the source and load are each in just one component,
and those two components are directly connected to each other. We can therefore directly choose Cx to
have the same reactance (magnitude) as L, knowing that this will cause the two components to ‘cancel’
(parallel resonance),

1

ωCx
= ωL =⇒ Cx =

1

ω2L
.

Now, with equal and opposite capacitive and inductive reactances, the parallel pair form an open-circuit
(zero admittance, infinite impedance), so can be ignored.

Our resistor Rx should match the resistance of the source at its terminals. We only have to consider
the resistance in the source in this case, because we’ve already dealt with the inductance by cancelling
it with the load capacitance. (It would not have been so easy if the inductance had been hiding on the
other side of R2, as it then would not have the same voltage as the capacitance, so the relation of Cx to
L would depend on other components too.)

Transferring R1 to the right of the transformer, we get a total resistance in the source of
N2

2

N2
1
R1 + R2.

This is the resistance that the load resistor should also have, for maximum power,

Rx =
N2

2

N2
1

R1 +R2.

II. Another way.

Here, we treat the problem in a more equation-based way, working from the basic rules without thinking
of simplifications for this special case.

The original circuit can be redrawn with everything referred to the secondary side, so the original U
and R1 become scaled values.

−
+ N2

N1
U

N2
2

N2
1
R1 R2

L Cx Rx

Everything on the source side of the terminals can be made into one Thevenin or Norton source, and
everything on the load side can be made into one impedance. In the Norton case we’ll express the
impedances in reciprocal form, admittance, where Yx = 1/Zx.
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−
+ UT

ZT

Zx IN YN Yx

The admittance of the source, seen at the terminals, is the parallel sum of the inductor and the two
series resistors.

YN =
1

ZT

=
1

N2
2

N2
1
R1 +R2

+
1

jωL
=

N2
2

N2
1
R1 +R2 + jωL

(

N2
2

N2
1
R1 +R2

)

jωL
.

The admittance of the load is the parallel sum,

Yx =
1

Zx
=

1

Rx
+ jωCx.

The source’s Thevenin voltage, i.e. the open-circuit voltage at the terminals, can be found by voltage
division:

UT =
N2
N1

U jωL

N2
2

N2
1
R1 +R2 + jωL

.

Alternatively, the source’s Norton current, i.e. the short-circuit current at the terminals, can be found
more easily, by Ohm’s law, as no current passes in the inductor when the terminals are short-circuited,

IN =
N2
N1

U

N2
2

N2
1
R1 +R2

.

Having bothered to find the three connected quantities, UT , IN and YN , we can check that IN/UT = YN ,
which fortunately it does. For part ‘a’ we only need the impedance or admittance. However, the Thevenin
voltage or Norton current of the source is useful for part ‘b’.

Now we take the maximum-power condition,

Zload = Z∗
source =⇒ Yload = Y ∗

source,

and apply it to our case,

Yx = Y ∗
N

=⇒ 1

Rx
+ jωCx =





1
N2

2

N2
1
R1 +R2

+
1

jωL





∗

=
1

N2
2

N2
1
R1 +R2

+ j
1

ωL
.

Compare separately the real and imaginary parts in the above. They show the same results for Rx and
Cx as were found by the earlier method, I.

We chose admittance, which fits well with the parallel connection of the reactive and resistive parts in
our source and load. If we worked with impedance the expressions would look rather less pleasant. If
the circuit had been a series loop, it would have been more convenient to work with impedances.

b. In the maximum-power condition, the reactive parts of the source and load cancel. In our specific case,
these parts (L and Cx) are directly parallel connected, so they cancel indepdently of other components
and can be ignored. What remains is just a loop with the three resistors, of which Rx has a value equal
to the other two together. The current around the loop is what the Thevenin voltage pushes through
the total resistance. The power it dissipates in Rx is the power we want to find, which is

Pmax =





N2
N1

U

2
(

N2
2

N2
1
R1 +R2

)





2

·
(

N2
2

N2
1

R1 +R2

)

=
1

4
· U2

R1 +R2N2
1 /N

2
2

.
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Q9

a. Each primary winding (coil) of the transformer has a voltage magnitude of 1√
3
U . This can be seen

from KVL in the loops at the left, including the neutral conductor in the loop. It can also be seen as the
result of having Y-connected phases of the source and the transformer primary: these things therefore
both get the same phase-voltage.

By the transformer’s ratio, each secondary winding has voltage magnitude N2
N1

1√
3
U .

The secondary windings are ∆-connected, so this is also the voltage between the outgoing connections
to the load, i.e. the line-voltage on the secondary side of the transformer.

The load is Y-connected, so each of its phases gets 1√
3
of the line voltage.

Chaining the above points together,

|uRγ | =
1√
3

N2

N1

1√
3
U =

U N2

3N1
.

b. The circuit has just sources, ideal transformers and resistors. Ideal transformers simply transfer
complex power, without producing or consuming. The total complex power from the three-phase source
is therefore the same as the total complex power to the load resistors, which can be found by the relation
S = |u|2/Z∗.

Stotal = 3

(

U N2
3N1

)2

R∗
=

U2N2
2

3RN2
1

.

c. The N2/N1 ratio determines the ratio of magnitudes of u2c and u1c. As the primary is connected to
a voltage source, its voltage is fixed, by KVL in the bottom left loop, to be the source voltage uc.

u2c =
N2

N1

U√
3

−4π
3 .

d. uRγ = 90°.

Geometrically.

Draw in the complex plane the phasors for the phase voltages
of the source, as shown in the upper diagram. These are also
the voltages on the transformer primaries.

In the lower diagram we consider what’s happening in
the secondary connections. The voltages on the transformer
secondaries, u2(a,b,c) have the same angles. The only difference
is that their magnitudes are scaled by N2/N1, which is
represented as n in the diagram on the right. The scaling is
not important as it applies similarly to all phases and we only
want to find the angle.

Let’s start from the lower end of the top-transformer’s
secondary. We can choose an arbitrary point in the complex
plane to represent the potential of this node in the circuit.
Starting from this potential we draw the voltage u2a, with the
same direction as was drawn for the primary voltage u1a. The
far end of this line is the potential at the top (dot-end) of the
top transformer’s secondary. This top node connects down to
the lower end of the bottom transformer’s secondary, so we
now draw the voltage u2c to find the potential of the point at
the dot-end of the bottom transformer. From there, we draw
the remaining voltage, u2b, which takes us back to the starting
point again.
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Now we have the potentials at the transformer output (secondary terminals), using an arbitrary reference.

All we care about is the voltage uRγ , which is between one of the transformer output potentials and the
load’s neutral point. It is not affected by our choice of reference.

The load resistors have a balanced Y connection, so their neutral point’s potential will be the mean of
the three potentials of the transformer output. The neutral potential is therefore the centre point of the
triangle of phasors that we drew.

The + end of voltage uRγ connects to the node between the lower and middle transformers. In our
phasor diagram, the potential of this node is the point between lines c and b, which is the top corner of
the triangle. Relative to the centre point of the triangle, this potential lies along the +j direction in the
complex plane.

Thus, uRγ = π/2.
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