
KTH EI1120 Elkretsanalys (CENMI) TEN1 2021-06-10 kl. 08–13

Permitted material: Beyond writing-equipment, up to three pieces of paper up to A4 size can be used,
with free choice of content: handwritten, printed; small, large; text, diagram, image; one or both sides,
etc. These papers do not need to be handed in with the exam.

Unless it is stated otherwise, the final answer to a question should be expressed in terms of the known
quantities given in the question, and any clear simplifications should be done. Component values such
as R for a resistor, U for an independent voltage source, or K for a dependent source, are assumed to
be known quantities. Marked currents or voltages such as ix are assumed to be definitions, not known
quantities.

Clearly drawn and labelled diagrams are a good way to help yourself avoid mistakes, and to make clear
to others what you are doing. By showing clearly your intermediate steps in a solution, you improve
your chance of getting points even if the final result is wrong. You may write in Swedish or English;
but we suggest that writing in either is seldom necessary if you make good use of diagrams and equations!

Determination of exam grade. Let A, B and C be the available points from sections A, B and C of this
exam: A=12, B=10, C=18. Let h be the homework ‘bonus’, and a, b and c be the points obtained in
the respective sections, where each question’s points are the highest obtained at any opportunity during
this course-round, i.e. exam in March, exam in June, mini-exams (KS) in February, or the project task
that can substitute for question 9. The requirement for passing the exam (E or higher) is then:

a

A
≥ 40% &

b

B
≥ 40% &

c

C
≥ 40% &

a+ b+ c+ h

A+B + C
≥ 50%

The grade is then determined by the total including bonus, i.e. the last of the terms above: boundaries
(%) are 50 (E), 60 (D), 70 (C), 80 (B), 90 (A). If the exam misses a pass by a small margin on just
one criterion, a grade of Fx may be registered, with the possibility of completing to E by an extra task
arranged later.

Special for the VT21 round, both for ordinarie- and omtenta.

The exam is conducted remotely, monitored in a video meeting.
Answers must be in handwriting: either on paper that is scanned or photographed, or by handwriting
into a computer by means of a suitable touchscreen or pad.

Nathaniel Taylor (08 790 6222)
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Section A. Direct Current

1) [4p]

Determine:

a) [1p] the power from source U3

b) [1p] the marked voltage ux

c) [1p] the marked voltage uy

d) [1p] the power from source I2
I1

R2

R1

+

−

uy

− +

U1

− +

U2R3

R4

+

−

ux

I2

R5

−
+ U3

2) [4p]

Write equations that could be solved
without further information to find the
potentials v1, v2, v3 and v4 in this circuit
in terms of the component values.

R1

+

−

u

I

− +

U

Gu

R2

R3

−
+

H i

R4

i

v1

v2

v3

v4

3) [4p]

a) [2p] Draw the Thevenin equivalent of this
circuit, with respect to terminals a and b. Express
the Thevenin voltage and resistance in terms of the
original circuit’s component values.

In the following parts, ‘b’ and ‘c’, assume that:
R1 = R2 = R and I1 = I2 = I.
Express your answers in terms of R and I.

b) [1p] What is the maximum power that this
circuit can deliver at its terminals a and b.

c) [1p] Draw the Norton equivalent of the circuit,
expressing its components in terms of R and I.

R1
I
1

R2

I 2

a

b
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Section B. Transient Calculations

4) [5p]

Notice that two changes happen at t = 0.

Determine the:

a) [1p] energy stored in L1 at t = 0−

b) [2p] power into R2 at t = 0+

c) [1p] power out of source I at t = 0+

d) [1p] energy stored in C2 as t → ∞

x) [0p] this is not a proper question that gives points,
so you do not need to answer it – it is for interest or
for future years of students: What energy is stored in
L2 as t → ∞, and how would you prove this?

I · 1(−t)

C1
R1

L1

R2 C2

L2

t = 0

5) [5p]

a) [4p] Determine i(t) for t > 0.

b) [1p] Determine the power into the inductor for t > 0.
Note: this is relatively high work for the available points. −+

U
L

i(t)

R2 t = 0

R1
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Section C. Alternating Current

6) [4p]

a) [3p] Determine i(t).

b) [1p] Given the conditions

ω = R/L and Û = ÎR
√
2,

determine i(t) simplified as much as
possible.

i(t)

I(t) = Î sin (ωt+ π/4)
R

L

− +

U(t) = Û cos (ωt)

7) [4p]

−

+

+

−

ui

R1 L1

R2 L2

−

+

R3
C1

R4
C2

+

−

uo

a) [2p] Find this circuit’s network function, H(ω) = uo/ui.

Hint: the solution can be done as two independent parts, so this is not as hard as it might look.

When simplified, H(ω) should have the same form as the function in part ‘b’. Most of the credit here in
part ‘a’ can be gained from a correct function even without the full simplification.

b) [2p] Sketch a Bode amplitude plot of:

H(ω) = K
(1 + jω/ωa) (1 + jω/ωd)

(1 + jω/ωb) (1 + jω/ωc)

Take: K = 1, 100ωa = ωb, ωb ≪ ωc, 100ωc = ωd.
Mark significant levels and gradients.

8) [4p]

The source has angular frequency ω.

a) [3p] What values of R2 and C will
maximize the power going into R2? Express
these in terms of other components’ values.

N1 : N2

I

R0

R1 L R2 C

b) [1p] With R2 and C chosen as requested in ‘a’, what power is transferred into R2?
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9) [6p]

The diagram below shows a balanced three-phase system. A three-phase voltage source supplies the
primary side of a transformer that is formed from three single-phase transformers, all with N1 : N2

ratio. A resistive load is connected to the secondary side.

N1 N2

i1a

− +

ua = U 0

i
1b

− +

u
b
= U −2π

3

i1c

− +

uc = U −4π
3

+

−
u1a

+

−
u

1b

+

−
u1c

+

−
u2a

+

−
u

2b

+

−
u2c

i2a

i
2b

i2c

iRα

R

+ −
uRα

i
Rβ

R

+ −
u

Rβ

iRγ

R

+ −
uRγ

Note that straight lines crossing each other in this diagram do not indicate a connection. Connections
here involve three lines stopping at a single point.

a) [1p] What is the magnitude of the voltage u2b?

b) [2p] What is the magnitude of the current iRγ?

c) [2p] What total power is supplied from the source (all three single-phase sources).

d) [1p] What is the angle of i1b?

The End. Please don’t waste remaining time . . . check your solutions!
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Översättningar:

Hjälpmedel: Upp till tre A4-ark (b̊ada sidor) med studentens egna anteckningar p̊a valfritt sätt: handskrivet eller
datorutskrift; text, diagram, bild; stor eller liten textstorlek, o.s.v. Dessa måste inte lämnas in med skrivningarna.

Om inte annan information anges i ett tal ska: komponenter antas vara ideala; angivna värden av komponenter
(t.ex. R för ett motst̊and, U för en spänningskälla, K för en beroende källa) antas vara kända storheter; och andra
markerade storheter (t.ex. strömmen markerad i ett motst̊and eller spänningskälla) antas vara okända storheter.
Lösningar ska uttryckas i kända storheter och förenklas.

Var tydlig med diagram och definitioner av variabler. Du f̊ar skriva p̊a svenska eller engelska, men vi rekommenderar
att diagram och ekvationer används i stället i de flesta fall.

1. [4p] Bestäm följande:
a) [1p] effekten fr̊an källan U3

b) [1p] den markerade spänningen ux

c) [1p] den markerade spänningen uy

d) [1p] effekten fr̊an källan I2

2. [4p] Skriv ekvationer som skulle kunna lösas, utan vidare information, för att bestämma potentialerna v1, v2,
v3 och v4, som funktioner av kretsens komponentvärden. Det rekommenderas inte att du försöker lösa ekvationerna!

3. [4p] Bestäm:
a) [2p] Theveninekvivalenten mellan polerna a och b: rit diagram.
I deltal b och c antas R1 = R2 = R och I1 = I2 = I, och R och I används i lösningarna.
b) [1p] Den maximaleffekten som källan kan leverera mellan polerna a och b
c) [1p] Nortonekvivalenten mellan polerna a och b: rit diagram.

4. [5p] Bestäm:
a) [1p] energin lagrad i L1 vid t = 0−

b) [1p] effekten in till R2 vid t = 0+

c) [2p] effekten fr̊an källan I vid t = 0+

d) [1p] energin lagrad i C2 vid t → ∞.

5. [5p] Bestäm, för t > 0:
a) [4p] strömmen i(t) i spolen
b) [1p] effekten in till spolen.

6. [4p] Bestäm (genom växelströmsanalys):
a) [3p] strömmen i(t)
b) [1p] strömmen i(t) förenklad med villkoren ω = R/L och Û = ÎR

√
2.

7. [4p]
a) [2p] Bestäm kretsens nätverksfunktion.
b) [2p] Skissa ett Bodeamplituddiagram av H(ω) = K (1 + jω/ωa) (1 + jω/ωd) /[(1 + jω/ωb) (1 + jω/ωc)].
Anta att: K = 1, 100ωa = ωb, ωb ≪ ωc, 100ωc = ωd.
Markera viktiga punkter och lutningar.

8. [4p] Källan har vinkelfrekvens ω.
a) [3p] Vilka värden ska R2 och C ha, uttryckt i andra komponenters värden, för att maximera effekten som
kommer till R2?
b) [1p] Hur mycket effect (aktiveffekt) kommer till R2 när R2 och C väljs enligt ’a’?

9. [6p]
a) [1p] Magnituden av spänning u2b

b) [2p] Magnituden av strömmen iRγ

c) [2p] Totaleffekten levererad av källan (alla tre enfasiga källorna tillsammans)
d) [1p] Vinkeln av strömmen i1b.
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Solutions (EI1120 TEN1 VT21, 2021-06-10)

Q1

a. PU3 = U3I2

Two find the power in or out of any
two-terminal ‘thing’ (component,
or bigger part of a circuit) we
just need to multiply its terminal
voltage and current, using the
correct sign for the directions in
which these are defined and the
direction of power that we want. I1

R2

R1

+

−

uy

− +

U1

− +

U2R3

R4

+

−

ux

I2

R5

−
+ U3

Source I2 with KCL already determines the current up through U3. Source U3 determines its own voltage.
The product of voltage with current out of the voltage’s + terminal (‘active convention’) is the power
out of the component.

b. ux = (I2 − I1)R4

The loops to the left and right of R4 both have their current fixed by a current source. By KCL below
or above R4, the current down R4 is I2− I1. Ohm’s law then gives ux. Be careful to get the sign right: if
the current going up R4 had been found, a minus sign would be needed in Ohm’s law to find the voltage
marked in the direction that ux is.

c. uy = I2R4 + U1 − U2 − I1 (R3 +R4)

Take KCL around the loop of uy, R3, U2, R4, U1.
(This perhaps doesn’t look like a ‘loop’ in the circuit. Then consider uy as a component that just happens
to be an open circuit, zero current-source or whatever. Or think ‘potentialvandring’ [Swedish for ‘hiking
through potential-changes’?] instead of strict loop-based KVL.)
We already have found ux. The voltage across R3 is known through Ohm’s law as the source I1 fixes the
branch’s current. The voltage sources have given values. Thus uy = U1 + ux − U2 − I1R3. Substitute ux
from part ‘b’, and perhaps regroup for neatness.
The main trick in this question is that you shouldn’t do KVL around the leftmost loop as the current
source has an unknown voltage, not necessarily zero.

d. PI2 = I22 (R4 +R5)− I1I2R4 − U3I2.

Again, KVL around a loop, this time to find the voltage across source I2. Then multiply by the source
current. We’ll define the voltage across I2 with its reference (+) side on the right. KVL gives it as
(I2 − I1)R4 + I2R5 − U3.
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Q2

Extended nodal analysis

First, write KCL at every node except the
reference (earth) node.

In order to handle the voltage sources, we
define their unknown currents. Here we have
defined iα in the independent voltage source
U , and iβ in the dependent voltage source
H i, both going in to the source’s + terminal.

R1

+

−

u

I

− +

U
iα

Gu

R2

R3

−
+

H i

iβ

R4

i

v1

v2

v3

v4

KCL(1)(out) : 0 =
v1
R1

− iα − I (1)

KCL(2)(out) : 0 = I +
v2 − v3
R2

+
v2 − v3
R3

+ iβ (2)

KCL(3)(out) : 0 = −Gu+ iα +
v3 − v2
R2

+
v3 − v2
R3

(3)

KCL(4)(out) : 0 =
v4
R4

− iβ (4)

Then write the extra information that the voltage sources give about the node potentials:

v3 − v1 = U (5)

v2 − v4 = Hi (6)

Finally, express the definitions of the marked quantities that control dependent sources:

u = −v1 (7)

i = I +
v2 − v3
R2

(8)

The current i is marked within part of a node: it is not the current in any single component. We chose
to define it in terms of the currents leaving the node where the current-arrow points. We could equally
well have defined it in terms of the current entering the node in components on the other side of the
arrow, i.e. the current in R3 and the current iβ in the dependent voltage source. As we already have
KCL(2), either of the expressions for i can be derived from the other expression for i and KCL(2).

The above are 8 equations in 8 unknowns: v1, v2, v3, v4, iα, iβ , u, i. Having followed the rules, we expect
them to be independent equations.
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Q3

The circuit between terminals a and b can be seen
as a series connection of two Norton sources.

Its open circuit voltage must be I1R1 + I2R2, for
node a relative to node b. This can be seen by KCL
at the top and bottom when no current flows in the
terminals, and then KVL through the two resistors.

Its equivalent resistance is simply R1 + R2. It is a
dc circuit with no dependent sources, so there are
only resistors remaining if we set all the independent
sources to zero, i.e. make the current-sources open
circuit. R1

I
1

R2

I 2

a

b

a. The Thevenin parameters were shown in the above
text. For this part of the answer there should be a
diagram, and it should show the series-connected voltage
source and resistor with correct values, and the terminals
a and b should be marked to show the correct direction
of the Thevenin voltage.

−
+ UT = I1R1 + I2R2

RT = R1 +R2

a

b

b. Maximum power from a Thevenin source is:

U2
T

4RT

=
(I1R1 + I2R2)

2

4 (R1 +R2)
.

If we use the given simplification of I1 = I2 = I and R1 = R2 = R, then:

Pmax =
(2IR)2

4(2R)
=

1

2
I2R.

c. The Norton resistance is the same as the Thevenin
resistance. In contrast to part ‘a’ we can here use the
simplification such that R1 +R2 becomes 2R.

The Norton current is IN = UT/RT . After putting in the
simplifications as in part ‘b’, this becomes

IN =
2IR

2R
= I.

IN = I RN = 2R

a

b

The relation IN = I can alternatively be seen simply by considering the original circuit short-circuited,
with identical sources and resistors. The equal values of the current sources mean that there is no
unbalanced current to flow through either resistor. The terminal current is therefore the same as each
source’s current.
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Q4

The original circuit is shown on the right.

Two changes happen, both at time t = 0: the
current source ‘turns off’, and the switch closes.

We have to solve for quantities in the
initial equilibrium (0−), final equilibrium (∞),
and just after the disturbance of the initial
equilibrium (0+).

For each state we’ll draw a simplified diagram.

I · 1(−t)

C1
R1

L1

R2 C2

L2

t = 0

Initial equilibrium, t = 0−.

At this time the switch is still open, so its whole
branch has been removed.

The current source is active, as the unit-step
function with negated time, 1(−t), is 1 for t <
0. This source value is therefore written as just
I for this specific time-range.

The assumption of equilibrium, i.e. constant
values of all voltages and currents, implies
that inductors behave as short-circuits and
capacitors as open-circuits.

I

C1
R1

L1

R2 C2

L2

By current division the current through L1 is IR1
R1+R2

.
From this the stored energy in L1 can be determined.

a. WL1(0
−) =

1

2
L1

(

IR1

R1 +R2

)2

.

Continuity just after the step, t = 0+.

Here, the capacitor voltages and inductor currents have
not had a chance to change in spite of the voltage-source’s
change. We can represent them as sources, as shown on
the right. The values of these sources can be found from
the case at t = 0−.

We already have already found iL1 at t = 0−.
By continuity, iL1(0

+) = IR1
R1+R2

.

By continuity the capacitors still have the same voltage
as at t = 0−. At t = 0−, the voltage across R1 and R2

is caused by the source current I passing through their
parallel sum. By KVL at t = 0− this is also the voltage
across the capacitors.

Hence uC1(0
+) = uC2(0

+) = I R1R2
R1+R2

.

−
+uC1

R1

iL1

R2 −
+ uC2

iL2 = 0
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In the circuit at t = 0+, KVL gives the voltage across R2 as uC2 .

b. PR2(0
+) =

u2
C2
R2

=
I2R2

1R2

(R1+R2)
2 .

The source’s current is 0 at t = 0+, as the step function (with time negated) is zero then. So there
cannot be any power into or out of the source.

c. PI(0
+) = 0.

Final equilibrium, t → ∞.

The energy stored in C2 is zero, as the circuit has stood for
‘a long time’ (equilibrium) with no source driving it and
with resistors connected across C2. With no current in the
resistors, there cannot be voltage across the capacitor.

The initial stored energy in inductors and capacitors (t =
0+) will decay if it is used to push current in the resistors.

d. WC2(∞) = 0.

The following answer was probably found by anyone who
looked at this non-rewarding part-question!

x. WL2(∞) = 0.

This is correct: but how can one prove it?

C1
R1

L1

R2 C2

L2

It may be tempting to use the diagram on the right, claiming equilibrium and the lack of any source:
in other words, the same idea as in Q4d. But there is a difference. In Q4d we could argue that there
can only be a voltage on the capacitor (after a long time) if something can keep supplying power to the
resistors that are in parallel with it . . . and there is no source to do this.

Here, instead, the inductor L2 is short-circuited for all t > 0, so it has zero voltage. Zero voltage on a
component means it can’t have power in or out, so its stored energy remains. Alternatively we could see
this as u = 0 =⇒ di

dt = 0 for an inductor. So its current must be the same at t → ∞ as at t = 0+, or
(by continuity) at t = 0−.

Looking back to the circuit at the equilibrium of t = 0− the inductor is in series with a capacitor, so its
current is zero. This is the argument that is needed to justify the tempting and correct answer of 0.
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Q5

a. The marked current i(t) is the current in the
inductor, so it is a continuous quantity.

Its value at t = 0+ (the start of the period of interest)
is the same as its value at t = 0− (just before the
switch closes).

−+

U
L

i(t)

R2 t = 0

R1

At t = 0− the branch with the switch is open.

The inductor is in equilibrium (zero voltage) as
the circuit has had no recent changes.

By KVL around the single remaining loop,

i(0−) =
U

R1
.

−+

U
(L)

i(t)

R1

The period of interest is t > 0, from the time
when the switch closes.

R2 is then in parallel with R1.

This can be drawn in simplified form as on the
right. It is directly a Thevenin source connected
to the inductor. −+

U
L

i(t)

R1R2
R1+R2

Taking KVL around the loop,

U − R1R2

R1 +R2
i− L

di

dt
= 0,

from which
di

dt
+

R1R2

R1 +R2

1

L
i =

1

L
U.

This (by a standard result for this form of ODE, y′ + ay = b) has the solution

i(t) =
1
L
U

R1R2
R1+R2

1
L

+A e
−t

R1R2
L(R1+R2) =

U (R1 +R2)

R1R2
+A e

−t
R1R2

L(R1+R2) .

The constant A can be found from the initial condition,

i(0+) = i(0−) =
U

R1
=

U (R1 +R2)

R1R2
+A (as e0 = 1),

giving that

A =
U

R1
− U (R1 +R2)

R1R2
=

−U

R2
.

Therefore,

i(t) =
U (R1 +R2)

R1R2
− U

R2
e
−t

R1R2
L(R1+R2) (t > 0).
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b. The power into the inductor is the product of its current and voltage, with suitable choice of sign.

If we define the inductor’s voltage as u with its reference side (+) where the current i goes in, then from
the relation of inductor current and voltage,

u(t) = L
di(t)

dt
= L · −U

R2
· −R1R2

L (R1 +R2)
· e−t

R1R2
L(R1+R2) .

The power is then

p(t) = u(t) · i(t) =
UR1

R1 +R2
e
−t

R1R2
L(R1+R2)

(

U (R1 +R2)

R1R2
− U

R2
e
−t

R1R2
L(R1+R2)

)

.

This is not made much simpler by rearranging, so there’s no requirement to do more than the above.

One might like to collect it as two terms, to show that it’s two decaying exponentials, with different
speeds and directions:

p(t) =
U2

R2

(

e
−t

R1R2
L(R1+R2) − R1

R1 +R2
e
−2t

R1R2
L(R1+R2)

)

(t > 0).
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Q6

a. Determine i(t).

Both sources have the same frequency (angular
frequency ω) so we can use a single ac analysis.

i(t)

I(t) = Î sin (ωt+ π/4)
R

L
− +

U(t) = Û cos (ωt)

Start by defining the circuit as phasors and
impedances instead of time functions.

We’ll use a cosine reference and peak values.

i(ω)

I(ω) = Î − π/4
R

Zl = jωL

− +

U(ω) = Û 0

The marked current i can be found by KCL from the currents in the left and right branches.

The current in the left branch is already defined by the function given for the current source.

The current in the right branch can be found by the source voltage and KVL in the right loop. Defined
in the upward direction in the right branch, this is U(ω)

R+jωL .

Putting these together by KCL,

i(ω) =
U(ω)

R+ jωL
− I(ω) =

Û 0

R+ jωL
− Î − π/4.

In order to find the time-function of this solution, we use the same choice of reference angle and magnitude
as when we converted from the original time-functions. In our case, with cosine reference and peak values,
we can write the time-function as

i(t) = |u(ω)| cos
(

ωt+ u(ω)
)

.

In order to do this, the magnitude and angle of i(ω) must be found. The expression for i(ω) has two
terms that are added (here, we’re using ‘adding’ broadly, to mean adding or subtracting). It is not a good
idea to make these terms into polar form before they are added. Adding is much neater in rectangular
form. So we make each term into a separate real and imaginary part:

i(ω) =
Û

R2 + ω2L2
(R− jωL)− Î

(

1√
2
− j√

2

)

The factors with 1/
√
2 in the above come from taking cos and sin of the − π/4 angle.

Now group the real and imaginary parts together, to get a neat rectangular form,

i(ω) =

(

ÛR

R2 + ω2L2
− Î√

2

)

+ j

(

Î√
2
− ÛωL

R2 + ω2L2

)

.
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In order to avoid writing out the above expressions several times, let’s write the above as i(ω) = a+ jb,
and express the time-function as:

i(t) =
√

a2 + b2 cos
(

ωt+ arctan b/a
)

.

In this case, where the terms don’t simplify nicely when finding the magnitude and angle, it is fine to
write the solution in the above short way. It shows adequately that one knows the steps. (But if an
appreciable simplification could be made after putting in the full expressions in the solution, then that
path should be followed.)

b. Simplify i(t) given the conditions:

ω = R/L and Û = ÎR
√
2.

Consider the final expression for i(ω) in part ‘a’.

The first condition means that the terms involving Û have equal magnitude in the real and imaginary
parts, since ωL = R.

The second condition means that each term with Û has the same magnitude but opposite sign, to the
corresponding term with Î.

For example, if we substitute both conditions into one of the Û terms, we get

ÛR

R2 + ω2L2
=

ÛR

R2 +R2
=

Û

2R
=

ÎR
√
2

2R
=

Î√
2
.

The fully simplified result is then
i(ω) = 0, i(t) = 0.
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Q7

a. This is two inverting amplifiers, cascaded.
Each has two components making up each of its impedances.

−

+

+

−

ui

R1 L1

R2 L2

−

+

R3
C1

R4
C2

+

−

uo

The input to the second amplifier (the left side of R3) connects to the first amplifier’s opamp output.
This is a stiff voltage source, which the left opamp forces to be whatever potential is needed to ensure
that its inverting input stays at its inverting input’s zero potential. So this is not affected by whatever
current flows through R3. The two amplifiers can therefore be analysed separately, and their network
functions combined to give the total network function.

In the first amplifier, the feedback impedance is Z2 = R2 + jωL2 and the input impedance is Z1 =
R1+jωL1. Its network function is then H1 = −Z2/Z1, from the standard result for an inverting amplifier.

Doing similarly for the second amplifier, and putting the two together,

H(ω) = H1(ω) ·H2(ω) =
− (R2 + jωL2)

R1 + jωL1
·
−
(

R4 +
1

jωC2

)

R3 +
1

jωC1

Now divide or multiply terms by suitable factors to get the standard form of 1 + jω/ωx,

H(ω) =
R2 + jωL2

R1 + jωL1
·
R4 +

1
jωC2

R3 +
1

jωC1

=
R2C1

R1C2
· 1 + jωL2/R2

1 + jωL1/R1
· 1 + jωC2R4

1 + jωC1R3
.
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b. Bode amplitude plot of

H(ω) = K
(1 + jω/ωa) (1 + jω/ωd)

(1 + jω/ωb) (1 + jω/ωc)
,

given that K = 1, 100ωa = ωb, ωb ≪ ωc, 100ωc = ωd.

10 0 10 2 10 4 10 6 10 8 10 10

f  or     [a.u.]

0

5

10

15

20

25

30

35

40
|H

(
)|

  
[d

B
]

|H( )|
dB

 actual function

asymptotic approximation

a b c d

+20 dB/dec

0 dB/dec

-20 dB/dec

Necessary parts are: the asymptotic approximation lines, the gradients of the up and down slopes, the
0 dB and 40 dB levels, and the locations of ωa,b,c,d. The actual curve is not needed. The flat parts do not
need marking with 0 dB/decade. No numeric frequencies are needed.

Some explanation of the plot:

For ω ≪ ωa, all the five multiplied or divided terms are 1, so the amplitude is |H(ω)| = 1, i.e. 0 dB.

When ω exceeds ωa, the term (1 + jω/ωa) gives a magnitude that rises at 20 dB/decade.

When ω exceeds ωb, the term on the bottom contributes with −20 dB/decade to |H(ω)|, so it cancels
the contribution from the ωa term and the plot stays flat at 40 dB.

Because ωb = 100ωa, the rising amplitude between ωa and ωb continues for 2 decades. The magnitude
at the top, |H(ωb)|, is therefore +40 dB, as we know it started from zero and rose at 20 dB/decade for
2 decades.

When ω exceeds ωc, there is a further downward-going term at −20 dB/decade.

When ω exceeds ωd, the final term cancels the ωc term, and no further change happens. The final level
(for all ω > ωd) is 0 dB, because the downward-going change started from 40 dB and continued for 2
decades.
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Q8

a. We want to maximize the power transferred to R2, by adjusting R2 and C in terms of the other
component values (which are all fixed).

If we consider R2 and C as a load
impedance that we choose, and the rest
of the circuit as a two-terminal circuit
with a fixed source-impedance, we can
use the ac maximum power principle.

N1 : N2

I

R0

R1 L R2 C

We can omit R0, as it is in series with the current source so it doesn’t affect what happens in the rest
of the circuit.

To simplify handling the transformer, let’s
remove (bypass) the transformer and scale
the components that were on its left, so that
they still give the same behaviour between
the two nodes that were connected to the
transformer’s secondary.

N1
N2

I
N2

2

N2
1
R1 L C R2

Thinking physically, the procedure for maximum power transfer is first to ‘cancel’ the source’s
reactive part with the load’s reactive part. The capacitor should be therefore chosen to have the same
magnitude of reactance as the inductor, so that these impedances are ‘equal and opposite’:

1

jωC
= −jωL =⇒ C =

1

ω2L
.

In this parallel case, the result is that the parallel L and C form a parallel-resonant pair, with infinite
impedance: their currents always cancel, so they don’t affect the rest of the circuit.

Then we’re left with just the source and load resistance, for which the maximum power condition can
be argued in the same way as in the dc case: load resistance should equal source resistance. Resistor R2

should therefore be chosen to have the same resistance as the source, when both are seen on the same
side of the transformer. From the second diagram above, this means:

R2 =
N2

2

N2
1

R1.

Alternatively – thinking more in terms of equations – maximum power transfer requires that the
load impedance is the complex conjugate of the source impedance. The same is true for the admittances
(reciprocal impedance).

As the circuit is very parallel, it may help to work with admittances. In the parallel connection the
separate component admittances add to give the total admittance. This is more convenient than the
expressions for parallel impedances, which can make it harder to separate the real and imaginary parts.

Ysource =
1

N2
2

N2
1
R1

+
1

jωL
, Yload =

1

R2
+ jωC, Yload = Y ∗

source, etc.

From this, the same results as before will follow. It is easy because the real and imaginary parts of
the admittances are separated and do not mix the individual component values, so two independent
equations are obtained for finding R2 and C.
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b. Maximum power available is 1
4 I

2R1.

This can be seen from just the part to the left of the transformer in the original circuit. R0 is irrelevant.
R1 limits what power can be delivered from I to the parts further to the right. The transformer doesn’t
restrict what power flow can happen: it gives no loss or gain of power (although it does change which
value of load resistance must be chosen in order to obtain maximum power). The inductor is cancelled
when the load’s capacitor is chosen for maximum power. So this set of components can deliver whatever
maximum power the Norton source of I and R1 can provide. This is obtained when the load connected
to the Norton source is equal to R1, in which case the load gets half of the source’s current.

An alternative method is to work on the secondary side with scaled quantities.

Ignore L and C, as we know they will together be an open circuit when C is chosen for maximum power.

Then we have a Norton source of N1
N2

I and
N2

2

N2
1
R1, connected to a load of R2 =

N2
2

N2
1
R1.

The current in the load is, by current division,

i =
N1

N2
I

N2
2

N2
1
R1

N2
2

N2
1
R1 +R2

=
1

2

N1

N2
I,

so the power in the load is

P = i2R2 = i2
N2

2

N2
1

R1 =

(

1

2

N1

N2
I

)2 N2
2

N2
1

R1 =
1

4
I2R1.
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Q9

a. |u2b| =
N2

N1
U

Each single-phase source has voltage magnitude U . (By the convention for ‘power’-oriented questions,
the magnitude will be rms.) These sources are Y-connected, and the transformer primaries are also Y-
connected, so each transformer primary gets voltage magnitude U . The transformer ratio then determines
the secondary-voltage magnitudes. u2b is one of these voltages on a transformer secondary.

b. |iRγ | =
N2U

N1

√
3R

The transformer secondaries are ∆-connected, so the line voltage out is the value from part ‘a’. The load
resistors are Y-connected, so each gets 1/

√
3 of this voltage.

c. Ptot =
N2

2U
2

N2
1R

The total power from the sources is the total power to the resistors, since there is nothing else in the
circuit that can absorb or produce active or reactive power.

There are 3 resistors, each with a power |i|2R where the magnitude |i| is as found in part ‘c’ above.

Thus, Ptot = 3
(

N2U

N1

√
3R

)2
R =

3N2
2U

2R

N2
1

√
3
2
R2

, which simplifies further.

d. −2π
3 , i.e. 120 deg

The load is resistive and balanced. Each phase of the source will therefore provide a current in phase
with its voltage.
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